Đề bài
Cho tứ giác ABCD, gọi O là giao điểm của AC và BD. Biết rằng OA = OB, OC = OD. Chứng minh rằng tứ giác ABCD là hình thang cân.
Lời giải chi tiết
OA = OB (gt) và OC = OD (gt) \( \Rightarrow OA + OC = OB + OD \Rightarrow AC = BD\)
Ta có OA = OB => ∆OAB cân tại O \( \Rightarrow \widehat {ABO} = {{180^\circ - \widehat {AOB}} \over 2}\)
Mà \(\widehat {ODC} = {{180^\circ - \widehat {DOC}} \over 2}\) (∆DOC cân tại O vì OD = OC)
Và \(\widehat {AOB} = \widehat {DOC}\) (đối đỉnh) nên \(\widehat {ABO} = \widehat {ODC}\)
Lại có \(\widehat {ABO}\) và \(\widehat {ODC}\) là hai góc so le trong
Do đó AB // CD => Tứ giác ABCD là hình thang
Hình thang ABCD (AB // CD) có \(AC = BD\) nên là hình thang cân.
CHƯƠNG 1. KHÁI QUÁT VỀ CƠ THỂ NGƯỜI
Tải 15 đề kiểm tra 15 phút - Chương 4 - Hóa học 8
Bài 28. Đặc điểm địa hình Việt Nam
CHƯƠNG 8. DA
Bài 26. Đặc điểm tài nguyên khoáng sản Việt Nam
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8