Đề bài
Cho tứ giác ABCD, gọi O là giao điểm của AC và BD. Biết rằng OA = OB, OC = OD. Chứng minh rằng tứ giác ABCD là hình thang cân.
Lời giải chi tiết
OA = OB (gt) và OC = OD (gt) \( \Rightarrow OA + OC = OB + OD \Rightarrow AC = BD\)
Ta có OA = OB => ∆OAB cân tại O \( \Rightarrow \widehat {ABO} = {{180^\circ - \widehat {AOB}} \over 2}\)
Mà \(\widehat {ODC} = {{180^\circ - \widehat {DOC}} \over 2}\) (∆DOC cân tại O vì OD = OC)
Và \(\widehat {AOB} = \widehat {DOC}\) (đối đỉnh) nên \(\widehat {ABO} = \widehat {ODC}\)
Lại có \(\widehat {ABO}\) và \(\widehat {ODC}\) là hai góc so le trong
Do đó AB // CD => Tứ giác ABCD là hình thang
Hình thang ABCD (AB // CD) có \(AC = BD\) nên là hình thang cân.
Bài 7. Phòng, chống bạo lực gia đình
Bài 19. Địa hình với tác động của nội, ngoại lực
Chủ đề 2. Thể hiện trách nhiệm với bản thân và mọi người
Bài 8
Unit 9. Life on other planets
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8