1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài tập - Chủ đề II. Phân tích đa thức thành nhân tử
Luyện tập - Chủ đề II. Phân tích đa thức thành nhân tử
Đề bài
Tìm giá trị lớn nhất của biểu thức:
a) \(A = 5x - {x^2}\) ;
b) \(B = x - {x^2}\) ;
c) \(C = 4x - {x^2} + 3\) ;
d) \(D = - {x^2} + 6x - 11\) ;
e) \(E = 5 - 8x - {x^2}\) .
Lời giải chi tiết
\(a)\,\,A = 5x - {x^2} = - \left( {{x^2} - 5x + {{25} \over 4}} \right) + {{25} \over 4} = - {\left( {x - {5 \over 2}} \right)^2} + {{25} \over 4} \le {{25} \over 4}\)
Dấu “=” xảy ra \( \Leftrightarrow x - {5 \over 2} = 0 \Leftrightarrow x = {5 \over 2}\) .
Vậy giá trị lớn nhất của biểu thức A là \({{25} \over 4}\).
\(b)\,\,x - {x^2} = - \left( {{x^2} - x + {1 \over 4}} \right) + {1 \over 4} = - {\left( {x - {1 \over 2}} \right)^2} + {1 \over 4} \le {1 \over 4}\)
Dấu “=” xảy ra \( \Leftrightarrow x - {1 \over 2} = 0 \Leftrightarrow x = {1 \over 2}\) .
Vậy giá trị lớn nhất của biểu thức B là \({1 \over 4}\).
\(c)\,\,C = 4x - {x^2} + 3 = - \left( {{x^2} - 4x + 4} \right) + 7 = - {\left( {x - 2} \right)^2} + 7\)
Dấu “=” xảy ra \( \Leftrightarrow x - 2 = 0 \Leftrightarrow x = 2\) .
Vậy giá trị lớn nhất của biểu thức C là 7.
\(d)\,\,D = - {x^2} + 6x - 11 = - \left( {{x^2} - 6x + 9} \right) - 2 = - {\left( {x - 3} \right)^2} - 2 \le - 2\)
Dấu “=” xảy ra \( \Leftrightarrow x - 3 = 0 \Leftrightarrow x = 3\) .
Vậy giá trị lớn nhất của biểu thức D là -2.
\(e)\,\,E = 5 - 8x - {x^2} = - \left( {{x^2} + 8x + 16} \right) + 21 = - {\left( {x + 4} \right)^2} + 21 \le 21\)
Dấu “=” xảy ra \( \Leftrightarrow x + 4 = 0 \Leftrightarrow x = - 4\) .
Vậy giá trị lớn nhất của biểu thức E là 21.
Grammar Bank
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - VẬT LÍ 8
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 8
Chủ đề V. Điện
Bài 19
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8