CHƯƠNG II. ĐA GIÁC. DIỆN TÍCH ĐA GIÁC

Luyện tập 9 trang 172 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho hình binh hành ABCD có M, N, P, Q lần lượt là trung điểm các cạnh AB, BC. CD, DA. Đoạn BQ cắt AP và CM tại R và S, đoạn DN cắt AP và CM tại V và T. Tính ti số diện tích của hai hình bình hành RSTV vả ABCD

Lời giải chi tiết

 

Ta có: QD // BN và \(QP = BN\) (vì \(QD = {{AD} \over 2} = {{BC} \over 2} = BN\))

Do đó tứ giác QBND là hình bình hành \( \Rightarrow QB//DN\)

Chứng minh tương tự ta có AP // MC

Do đó tứ giác RSTV là hình bình hành \( \Rightarrow {S_{RSTV}} = 2{S_{TRS}}\)

\(\Delta ARB\) có MS // AR, AM = BM

\( \Rightarrow RS = BS \Rightarrow {S_{TRS}} = {S_{TBS}}\)

\(\Delta SBC\) có TN // SB, \(BN = CN\)

\( \Rightarrow ST = CT \Rightarrow {S_{TBS}} = {S_{TBC}}\)

Do đó \({S_{RSTV}} = {S_{BCS}}\)

Tương tự \({S_{RSTV}} = {S_{ABR}}\)

\({S_{RSTV}} = {S_{ADV}};\,\,{S_{RSTV}} = {S_{CDT}}\)

Mà \({S_{ABCD}} = {S_{RSTV}} + {S_{BCS}} + {S_{ABR}} + {S_{ADV}} + {S_{CDT}} = 5{S_{RSTV}}\)

Vậy \({{{S_{RSTV}}} \over {{S_{ABCD}}}} = {1 \over 5}\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved