1. Khái niệm bất phương trình bậc nhất hai ẩn
+) Bất phương trình bậc nhất hai ẩn x, y là BPT có một trong các dạng
\(ax + by + c \le 0\;;ax + by + c \ge 0;ax + by + c < 0;ax + by + c > 0\) trong đó a, b, c là những số cho trước, a và b không đồng thời bằng 0, x và y là các ẩn.
Ví dụ: \(2x + 3y - 10 > 0\)
2. Nghiệm của bất phương trình bậc nhất hai ẩn
+) Mỗi cặp số \(({x_0};{y_0})\) thỏa mãn \(a{x_0} + b{y_0} + c\; < 0\) được gọi là một nghiệm của BPT đã cho.
Ví dụ: cặp số \((3;5)\) là một nghiệm của BPT \(2x + 3y - 10 > 0\) vì \(2.3 + 3.5 - 10 = 11 > 0\)
+) BPT bậc nhất hai ẩn luôn có vô số nghiệm.
3. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn
+) Trong mặt phẳng tọa độ Oxy, tập hợp các điểm \(({x_0};{y_0})\) sao cho \(a{x_0} + b{y_0} + c < 0\) được gọi là miền nghiệm của bất phương trình \(ax + by + c < 0\).
+) Biểu diễn miền nghiệm của BPT \(ax + by + c < 0\)
Bước 1: Trên mặt phẳng Oxy, vẽ đường thẳng \(\Delta :ax + by + c = 0\).
Bước 2: Lấy một điểm \(M({x_0};{y_0})\) không thuộc \(\Delta .\) Tính \(a{x_0} + b{y_0} + c\)
Bước 3: Kết luận
- Nếu \(a{x_0} + b{y_0} + c < 0\) thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ \(\Delta \)) chứa điểm \(M\).
- Nếu \(a{x_0} + b{y_0} + c > 0\) thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ \(\Delta \)) không chứa điểm \(M\).
* Chú ý:
- Nếu \(c \ne 0\) ta thường chọn \(M\) là gốc tọa độ.
- Nếu \(c = 0\) ta thường chọn \(M\) có tọa độ \((1;0)\) hoặc \((0;1).\)
Chủ đề 3. Một số nền văn minh thế giới thời kì cổ-trung đại
Chương 1. Mở đầu
Chủ đề 6. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Chương 5. Năng lượng hóa học
Chương 2. Trái Đất
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10