Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và phép chia các đa thức
Đề kiểm tra 15 phút - Chương 1 - Đại số 8
Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Đại số 8
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Đề kiểm tra 15 phút – Chương 2 – Đại số 8
Đề kiểm tra 45 phút (1 tiết ) – Chương 2 – Đại số 8
1. Các kiến thức cần nhớ
Chia đa thức một biến đã sắp xếp
- Muốn chia đa thức một biến $A$ cho đa thức một biến$B \ne 0$ , trước hết ta phải sắp xếp các đa thức này theo lũy thừa giảm dần của cùng một biến và thực hiện phép chia như phép chia các số tự nhiên.
- Với hai đa thức tùy ý $A$ và $B$ của một biến $\left( {B \ne 0} \right)$, tồn tại duy nhất hai đa thức $Q$ và $R$ sao cho $A = B.Q + R$
Trong đó $R = 0$ hoặc bậc của $R$ thấp hơn bậc của $B.$
+ Nếu $R = 0$ thì phép chia $A$ cho $B$ là phép chia hết.
+ Nếu $R \ne 0$ thì phép chia $A$ cho $B$ là phép chia có dư.
Ví dụ 1:
Ta viết lại \(\left( {6{x^3} - 7{x^2} - x + 2} \right):\left( {2x + 1} \right) = 3{x^2} - 5x + 2\). Nhận thấy số dư \(R = 0\) nên đây là phép chia hết.
Ví dụ 2:
Ta viết lại \({x^3} - 3{x^2} + 2x + 1 = \left( {x + 1} \right)\left( {{x^2} - 4x + 6} \right) - 5\) . Vì \(R = - 5 \ne 0\) nên đây là phép chia có dư.
2. Các dạng toán thường gặp
Dạng 1: Tìm thương, số dư của phép chia đa thức một biến đã sắp xếp
Phương pháp:
Muốn chia đa thức một biến $A$ cho đa thức một biến$B \ne 0$ , trước hết ta phải sắp xếp các đa thức này theo lũy thừa giảm dần của cùng một biến và thực hiện phép chia như phép chia các số tự nhiên.
Dạng 2: Xác định hằng số \(a,b\) sao cho phép chia cho trước là phép chia hết.
Phương pháp:
Sử dụng tính chất phép chia hết có số dư \(R = 0\) để tìm \(a,b\) .
Chú ý:
\(Ax + B = 0\) với \(\forall x \Leftrightarrow \left\{ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)
Chủ đề 8. Khám phá thế giới nghề nghiệp
CHƯƠNG 4. HÔ HẤP
Unit 9: Phones Used to Be Much Bigger
CHƯƠNG 7. BÀI TIẾT
Test yourself 4
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8