Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
1. Các kiến thức cần nhớ
Công thức tính diện tích hình tròn
Diện tích $S$ của một hình tròn bán kính $R$ được tính theo công thức \(S = \pi {R^2}\)
Công thức tính diện tích hình quạt tròn
Diện tích hình quạt tròn bán kính $R$, cung \(n^\circ \) được tính theo công thức
\(S = \dfrac{{\pi {R^2}n}}{{360}}\,\,hay\,\,\,S = \dfrac{{l.{\rm{R}}}}{2}\) ( với $l$ là độ dài cung \(n^\circ \)của hình quạt tròn).
2. Các dạng toán thường gặp
Dạng 1: Tính diện tích hình tròn, diện tích hình quạt tròn và các đại lượng liên quan
Phương pháp:
Áp dụng các công thức tính diện tích hình tròn \(S = \pi {R^2}\) và diện tích hình quạt tròn bán kính $R,$ cung \(n^\circ \)
\(S = \dfrac{{\pi {R^2}n}}{{360}}\,\,hay\,\,\,S = \dfrac{{l.{\rm{R}}}}{2}\) (với $l$ là độ dài cung \(n^\circ \)của hình quạt tròn)
Dạng 2 : Bài toán tổng hợp
Phương pháp :
Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kinh đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn.
Đề thi vào 10 môn Toán Đắk Lắk
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NAY
Unit 1: Local environment
Đề kiểm tra 15 phút - Chương 7 - Sinh 9
Đề kiểm tra 15 phút - Chương 1 - Hóa học 9