Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
I. Các kiến thức cần nhớ
1. Hai điểm đối xứng qua một điểm
Định nghĩa: Hai điểm $A$, $B$ gọi là đối xứng với nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.
Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$
Ví dụ: \(B\) đối xứng với \(A\) qua \(O\) nếu \(O\) là trung điểm của \(AB\)
2. Hai hình đối xứng qua một điểm
Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm $O$ nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm $O$ và ngược lại. Điểm $O$ gọi là tâm đối xứng của hai hình đó.
Chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.
3. Hình có tâm đối xứng
Định nghĩa: Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$ . Ta nói hình $H$ có tâm đối xứng.
Định lý: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.
Ví dụ: Giao điểm $O$ của \(AC\) và \(BD\) là tâm của hình bình hành \(ABCD.\)
2. Các dạng toán thường gặp
Dạng 1: Tính độ dài cạnh, chu vi tam giác, tứ giác.
Phương pháp:
Sử dụng chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.
Dạng 2: Xác định tâm đối xứng của một hình. Xác định các yếu tố đối xứng nhau qua một điểm. Chứng minh các hệ thức hình học.
Phương pháp:
Ta thường sử dụng các định nghĩa và định lý sau:
+ Hai điểm $A$, $B$ gọi là đối xứng với nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.
+ Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8