Bài 1. Định lí Ta - let trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta - let
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất
Bài 6. Trường hợp đồng dạng thứ hai
Bài 7. Trường hợp đồng dạng thứ ba
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Bài 9. Ứng dụng thực tế của tam giác đồng dạng
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
I. Các kiến thức cần nhớ
Định nghĩa:
Hai tam giác gọi là đồng dạng với nhau nếu chúng có ba cặp góc bằng nhau từng đôi một và ba cặp cạnh tương ứng tỉ lệ.
Ví dụ: $\Delta ABC$ $\backsim$ $\Delta A'B'C'$\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat {A'},\,\widehat B = \widehat {B'},\widehat C = \widehat {C'}\\\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}\end{array} \right.\)
Chú ý:
* Tỉ số các cạnh tương ứng \(\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}} = k\) được gọi là tỉ số đồng dạng của hai tam giác.
Định lí về tạo ra hai tam giác đồng dạng
Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Cho $\Delta ABC$, $MN{\rm{//}}BC$
$ \Rightarrow \Delta AMN\Delta ABC.$
Chú ý: Định lí cũng đúng trong trường hợp đường thẳng cắt phần kéo dài hai cạnh của tam giác và song song với cạnh còn lại.
II. Các dạng toán thường gặp
Dạng 1: Sử dụng tam giác đồng dạng để tính độ dài cạnh, chu vi, tỉ số đồng dạng, số đo góc…
Phương pháp:
Ta sử dụng định nghĩa và định lý về hai tam giác đồng dạng. Sử dụng định lý Ta-lét và tính chất tỉ lệ thức để tính toán.
$\Delta ABC$ $\backsim$ $\Delta A'B'C'$\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat {A'},\,\widehat B = \widehat {B'},\widehat C = \widehat {C'}\\\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}\end{array} \right.\)
Dạng 2: Sử dụng tam giác đồng dạng để chứng minh các yếu tố hình học (hai đường thẳng song song, …)
Phương pháp:
Ta sử dụng $\Delta ABC$ $\backsim$ $\Delta A'B'C'$\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat {A'},\,\widehat B = \widehat {B'},\widehat C = \widehat {C'}\\\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}\end{array} \right.\)
Và định lý: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Unit 4: Our Past - Quá khứ của chúng ta
Unit 3: Please Don't Feed the Monkeys.
Unit 4: Ethnic groups of Viet Nam
Bài 27
Bài 29
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8