I. Hàm số bậc hai
+ Định nghĩa:
Hàm số bậc hai là hàm số cho bằng công thức dạng \(y = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R};a \ne 0.\)
+ Tập xác định: \(\mathbb{R}\)
II. Đồ thị hàm số bậc hai
+) Đồ thị hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) \((a \ne 0)\) là một parabol (P):
- Đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)
- Trục đối xứng: đường thẳng \(x = - \frac{b}{{2a}}\)
- Bề lõm: quay lên trên nếu \(a > 0\), quay xuống dưới nếu \(a < 0\)
- Cắt Oy tại điểm \((0;c)\)
* Chú ý: Nếu PT \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) thì đồ thị hàm số \(y = a{x^2} + bx + c\) cắt trục hoành tại 2 điểm có hoành độ lần lượt là 2 nghiệm này.
+) Vẽ đồ thị
1) Xác định đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)
2) Vẽ trục đối xứng d: \(x = - \frac{b}{{2a}}\)
3) Tìm tọa độ giao điểm của đồ thị với trục tung (A(0;c)), trục hoành (nếu có).
Xác định \(B\left( {\frac{{ - b}}{a};c} \right)\) (là điểm đối xứng với A qua d)
4) Vẽ parabol đỉnh S, trục đối xứng d, đi qua các điểm tìm được.
III. Ứng dụng
+) Bảng biến thiên
+) Ứng dụng của hàm số bậc hai
CHỦ ĐỀ II. BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC
Chủ đề 4. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Giang
Unit 10: Ecotourism
Unit 6. Destinations
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10