ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Lý thuyết hàm số lượng giác

 

 

1. Hàm số \(y = \sin x\)

- Có TXĐ \(D = R\), là hàm số lẻ, tuần hoàn với chu kì \(2\pi \), nhận mọi giá trị thuộc đoạn \(\left[ { - 1;1} \right]\). 

- Đồng biến trên mỗi khoảng \(\left( { - \dfrac{\pi }{2} + k2\pi ;\dfrac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {\dfrac{\pi }{2} + k2\pi ;\dfrac{{3\pi }}{2} + k2\pi } \right)\)

- Có đồ thị là đường hình sin đi qua điểm \(O\left( {0;0} \right)\)

2. Hàm số \(y = \cos x\)

- Có TXĐ \(D = R\), là hàm số chẵn, tuần hoàn với chu kì \(2\pi \), nhận mọi giá trị thuộc đoạn \(\left[ { - 1;1} \right]\).

- Đồng biến trên mỗi khoảng \(\left( { - \pi  + k2\pi ;k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi  + k2\pi } \right)\)

- Có đồ thị là đường hình sin đi qua điểm \(\left( {0;1} \right)\)

3. Hàm số \(y = \tan x\)

- Có TXĐ \(D = R\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in Z} \right\}\), là hàm số lẻ, tuần hoàn với chu kì \(\pi \), nhận mọi giá trị thuộc \(R\).

- Đồng biến trên mỗi khoảng \(\left( { - \dfrac{\pi }{2} + k\pi ;\dfrac{\pi }{2} + k\pi } \right)\).

4. Hàm số \(y = \cot x\)

- Có TXĐ \(D = R\backslash \left\{ {k\pi ,k \in Z} \right\}\), là hàm số lẻ, tuần hoàn với chu kì \(\pi \), nhận mọi giá trị thuộc \(R\).

- Nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).

 

 


 

 

Fqa.vn
Bình chọn:
4/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved