PHẦN GIẢI TÍCH - TOÁN 12

Lý thuyết hàm số lũy thừa

1. Khái niệm hàm số lũy thừa

Hàm số lũy thừa là các hàm số dạng \(y = {x^\alpha }\left( {\alpha  \in R} \right)\). Các hàm số lũy thừa có tập xác định khác nhau, tùy theo \(\alpha\): 

- Nếu \(\alpha\) nguyên dương thì tập các định là \(R\).

- Nếu \(\alpha \) nguyên âm hoặc \(\alpha  = 0\) thì tập các định là \(R\backslash \left\{ 0 \right\}\).

- Nếu \(\alpha \) không nguyên thì tập các định là \(\left( {0; + \infty } \right)\).

Chú ý: Hàm số \(y = \sqrt x \) có tập xác định là \(\left[ {0; + \infty } \right)\), hàm số \(y = \sqrt[3]{x}\) có tập xác định \(R\), trong khi đó các hàm \(y = {x^{\frac{1}{2}}},y = {x^{\frac{1}{3}}}\) đều có tập xác định \((0; +∞)\). Vì vậy \(y = \sqrt x \) và \(y = {x^{\frac{1}{2}}}\) ( hay \(y = \sqrt[3]{x}\) và \(y = {x^{\frac{1}{3}}}\)) là những hàm số khác nhau.

2. Đạo hàm của hàm số lũy thừa với số mũ tổng quát 

- Hàm số \(y = {x^\alpha }\) có đạo hàm tai mọi \(x ∈ (0; +∞)\) và \(y' = \left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\)

- Nếu hàm số \(u=u(x)\) nhận giá trị dương và có đạo hàm trong khoảng \(J\) thì hàm số \(y = {u^\alpha }\left( x \right)\) cũng có đạo hàm trên \(J\) và \[y' = \left[ {{u^\alpha }\left( x \right)} \right]' = \alpha {u^{\alpha  - 1}}\left( x \right)u'\left( x \right)\]

3. Đạo hàm của hàm số lũy thừa với số mũ nguyên dương

Trong trường hợp số mũ nguyên dương, hàm số lũy thừa \(y=x^n\) có tập xác định là \(R\) và có đạo hàm trên toàn trục số. Công thức tính đạo hàm số lũy thừa tổng quát được mở rộng thành \(\forall x \in R,\left( {{x^n}} \right)' = n{x^{n - 1}}\) và \[\forall x \in J,\left[ {{u^n}\left( x \right)} \right]' = n{u^{n - 1}}\left( x \right)u'\left( x \right)\] nếu \(u= u(x) \) có đạo hàm trong khoảng \(J\).

4. Đạo hàm của hàm số  lũy thừa với số mũ nguyên âm

Nếu số mũ là số nguyên âm thì hàm số lũy thừa \(y=x^n\) có tập xác định là \(R\backslash \left\{ 0 \right\}\) và có đạo hàm tại mọi \(x\) khác \(0\), công thức đạo hàm hàm số lũy thừa tổng quát được mở rộng thành \(\forall x \ne 0,\left( {{x^n}} \right)' = n{x^{n - 1}}\) và \[\forall x \in J,\left[ {{u^n}\left( x \right)} \right]' = n{u^{n - 1}}\left( x \right)u'\left( x \right)\]

nếu \(u= u(x) \ne 0\) có đạo hàm trong khoảng \(J\).

5. Đạo hàm của căn thức

Hàm số \(y = \sqrt[n]{x}\) có thể xem là mở rộng của hàm lũy thừa \(y = {x^{\frac{1}{n}}}\) (tập xác định của \(y = \sqrt[n]{x}\) chứa tập xác định của \(y = {x^{\frac{1}{n}}}\) và trên tập xác định của \(y = {x^{\frac{1}{n}}}\) thì hai hàm số trùng nhau).

Khi \(n\) lẻ thì hàm số \(y = \sqrt[n]{x}\) có tập xác định \(R\). Trên khoảng \((0; +∞) \) ta có \(y = \sqrt[n]{x} = {x^{\frac{1}{n}}}\) và \(\left( {{x^{\frac{1}{n}}}} \right)' = \dfrac{1}{n}{x^{\frac{1}{n} - 1}}\), do đó \(\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\).

Công thức này còn đúng cả với \(x < 0\) và hàm số \(y = \sqrt[n]{x}\) không có đạo hàm tại \(x= 0\).

Khi \(n\) chẵn hàm \(y = \sqrt[n]{x}\) có tập xác định là \([0;+∞)\), không có đạo hàm tại \(x= 0\) và có đạo hàm tại mọi \(x > 0\) tính theo công thức:

\[ \left( {\sqrt[n]{x}} \right)' =\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\]

Tóm lại, ta có \( \left( {\sqrt[n]{x}} \right)' =\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) đúng với mọi \(x\) làm cho hai vế có nghĩa.

Sử dụng quy tắc đạo hàm hàm hợp ta suy ra: Nếu \(u=u(x)\) là hàm có đạo hàm trên khoảng \(J\) và thỏa mãn điều kiện \(u(x) > 0, ∀x ∈ J\) khi \(n\) chẵn, \(u\left( x \right) \ne 0,\forall x \in J\) khi \(n\) lẻ thì

\[\forall x \in J,\left( {\sqrt[n]{{u\left( x \right)}}} \right)' = \dfrac{{u'\left( x \right)}}{{n\sqrt[n]{{{u^{n - 1}}\left( x \right)}}}}\]

6. Đồ thị hàm số \(y = {x^\alpha }\) trên khoảng \((0; +∞)\)

Chú ý: Khi khảo sát hàm số \(y = {x^\alpha }\) với \(\alpha \) cụ thể, cần xét hàm số trên toàn tập xác định của nó (chứ không phải chỉ xét trên khoảng \((0; +∞)\) như trên).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved