Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
1. Lý thuyế hàm số \(y= a^2 x (a \ne 0\))
Tập xác định của hàm số \(y = a{x^2}\) \((a ≠ 0)\)
Hàm số \(y = a{x^2}\) \((a ≠ 0)\) xác định với mọi giá trị của \(x ∈ R.\) nên tập xác định \(D=R.\)
Sự đồng biến và nghịch biến của hàm số $y = a{x^2}\,\,\left( {a \ne 0} \right)$
+) Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).
+) Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).
+) Nếu $a > 0$ thì $y > 0$ với mọi $x \ne 0$;
$y = 0$ khi $x = 0$ và giá trị nhỏ nhất của hàm số là $y = 0$.
+) Nếu $a < 0$ thì $y < 0$ với mọi $x \ne 0$;
$y = 0$ khi $x = 0$ và giá trị lớn nhất của hàm số là $y = 0$.
Đồ thị hàm số $y = a{x^2}\,\,\left( {a \ne 0} \right)$
Đồ thị của hàm số $y = a{x^2}\,\,\left( {a \ne 0} \right)$ là một đường cong đi qua gốc tọa độ $O$ và nhận trục $Oy$ làm trục đối xứng.
Đường cong đó là một parabol với đỉnh $O$.
- Nếu \(a > 0\) thì đồ thị nằm phía trên trục hoành, $O$ là điểm thấp nhất của đồ thị.
- Nếu \(a < 0\) thì đồ thị nằm phía dưới trục hoành, $O$ là điểm cao nhất của đồ thị.
2. Các dạng toán thường gặp
Dạng 1: Tính giá trị của hàm số tại một điểm cho trước
Phương pháp:
Giá trị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) tại điểm \(x = {x_0}\) là ${y_0} = ax_0^2$.
Dạng 2: Bài toán liên quan đến tính đồng biến và nghịch biến của hàm số
Phương pháp:
Xét hàm số \(y = a{x^2}\left( {a \ne 0} \right).\) Ta có:
- Nếu \(a > 0\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0\).
- Nếu \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0\).
Dạng 3: Các bài toán liên quan đến đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Phương pháp:
Để vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) ta thực hiện các bước sau
Bước 1: Lập bảng giá trị đặc biệt tương ứng giữa $x$ và $y$ của hàm số $y = a{x^2}\,\,(a \ne 0)$.
Thông thường ta sẽ lấy ít nhất 5 giá trị của $x$ là $-2;-1;0;1;2$ rồi tính lần lượt từng giá trị của $y$ tương ứng. Tuy nhiên ta cần linh hoạt trong cách lấy để thu được kết quả dễ xác định nhất.
Bước 2: Biểu diễn các điểm đặc biệt trên mặt phẳng tọa độ và vẽ đồ thị dạng parabol của hàm số đi qua các điểm đặc biệt đó.
Dạng 4: Tọa độ giao điểm của parabol và đường thẳng
Phương pháp:
Cho parabol $(P):y=a{x^2}(a \ne 0)$ và đường thẳng $d:y = mx + n$. Để tìm tọa độ giao điểm (nếu có) của $(d)$ và $(P)$, ta làm như sau:
Bước 1. Xét phương trình hoành độ giao điểm của $(d)$ và $(P)$: $a{x^2} = mx + n$ (*)
Bước 2. Giải phương trình (*) ta tìm được nghiệm (nếu có). Từ đó ta tìm được tọa độ giao điểm của $(d)$ và $(P)$ .
Số nghiệm của (*) bằng đúng số giao điểm của đường thẳng $d$ và parabol $P$.
- Nếu (*) vô nghiệm thì $(d)$ không cắt $(P)$;
- Nếu (*) có nghiệm kép thì $(d)$ tiếp xúc với $(P)$;
- Nếu (*) có $2$ nghiệm phân biệt thì $(d)$ cắt $(P)$ tại hai điểm phân biệt.
Đề thi vào 10 môn Văn Đồng Nai
Đề thi vào 10 môn Toán Quảng Ninh
Bài 31. Vùng Đông Nam Bộ
Bài 12
CHƯƠNG II. NHIỄM SẮC THỂ