PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Lý thuyết hằng đẳng thức đáng nhớ (tiếp)

6. Tổng hai lập phương

Tổng của lập phương hai biểu thức bằng tích của tổng hai biểu thức và bình phương thiếu của hiệu hai biểu thức đó.

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

7. Hiệu hai lập phương

Hiệu của lập phương hai biểu thức bằng tích của hiệu hai biểu thức và bình phương thiếu của tổng hai biểu thức đó.

\({A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\)

Ta có bảy hằng đẳng thức đáng nhớ

\(1.{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\(2.{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

\(3.{A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

\(4.{\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

\(5.{\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\)

\(6.{A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\)

\(7.{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\)

Các dạng toán cơ bản

Dạng 1: Rút gọn biểu thức

Phương pháp:

Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi.

Ví dụ: Rút gọn biểu thức \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

Ta có: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \)\(= \left( {x - 1} \right)\left( {{x^2} + x.1 + {1^2}} \right) = {x^3} - 1\)

Dạng 2: Tìm \({\bf{x}}\)

Phương pháp:

Sử dụng các hằng đẳng thức và phép nhân đa thức để biến đổi để đưa về dạng tìm \(x\) thường gặp

Ví dụ: Tìm \(x\) biết \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 8\)

Ta có: 

\(\begin{array}{l}
\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 8\\
\Rightarrow {x^3} + {2^3} = 8\\
\Rightarrow {x^3} + 8 = 8\\
\Rightarrow {x^3} = 0\\
\Rightarrow x = 0
\end{array}\)

Vậy \(x=0.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved