PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)

 

1. Góc tạo bởi đường thẳng \(y = ax + b (a ≠ 0)\) và trục \(Ox.\)

Gọi \(A\) là giao điểm của đường thẳng \(d:y = ax + b\) với trục \(Ox\) và \(T\) là một điểm thuộc đường thẳng, nằm phía trên trục \(Ox.\) Khi đó góc \(\alpha=\widehat {TAx}\) được gọi là góc tạo bởi đường thẳng \(d: y = ax + b\) và trục \(Ox.\) 

 

2. Hệ số góc của đường thẳng \(y = ax + b (a ≠ 0)\) 

+) Khi \(a > 0,\) góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc nhọn và nếu \(a\) càng lớn thì góc đó càng lớn nhưng vẫn nhỏ hơn \(90^0.\)

+) Khi \(a < 0,\) góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc tù và nếu \(|a|\) càng bé thì góc đó càng lớn nhưng vẫn nhỏ hơn \(180^0.\)

Như vậy, góc tạo bởi đường thẳng \(d: y = ax + b\) và trục \(Ox\) phụ thuộc vào \(a.\)

Người ta gọi \(a\) là hệ số góc của đường thẳng \(y = ax + b.\)

Lưu ý:

+) Khi \(a > 0,\) ta có \(\tan \alpha= a.\)

+) Khi \(a < 0,\) ta có \(\tan (180^0-\alpha) = -a.\)

Từ đó tìm được số đo của góc \(180^0-\alpha\) rồi suy ra số đo của góc \(\alpha.\)

+) Các đường thẳng có cùng hệ số \(a\) (\(a\) là hệ số của \(x\)) thì tạo với trục \(Ox\) các góc bằng nhau.

3. Các dạng toán cơ bản

Dạng 1: Xác định hệ số góc của đường thẳng

Phương pháp:

Đường thẳng \((d)\) có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\) có \(a\) là hệ số góc.

Ví dụ: Hệ số góc của đường thẳng \(y=-2x+1\) là \(a=-2\)

Dạng 2: Tính góc tạo bởi tia \(Ox\) và đường thẳng \((d).\)

Phương pháp:

Gọi \(\alpha \) là góc tạo bởi tia \(Ox\) và \(d.\) Ta có: \(a = \tan \alpha \)

Ví dụ: Góc tạo bởi tia \(Ox\) và đường thẳng \((d):y=\sqrt 3 x+1\) là \(\alpha \)

Khi đó: \(\tan \alpha=\sqrt 3\) nên \(\alpha =60^0\)

Dạng 3. Viết phương trình đường thẳng hoặc tìm tham số m khi biết hệ số góc

Phương pháp:

Gọi phương trình  đường thẳng cần tìm là $y = ax + b\,\,\left( {a \ne 0} \right)$.

Dựa vào lý thuyết về hệ số góc để tìm $a$. Từ đó, sử dụng dữ kiện còn lại của đề bài để tìm $b$.


 

 
 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved