Lý thuyết khái niệm về thể tích của khối đa diện

1. Khái niệm về thể tích khối đa diện

Có thể đặt tương ứng cho mỗi khối đa diện \(\displaystyle H\) một số dương \(\displaystyle V_{(H)}\) thỏa mãn các tính chất sau:

a) Nếu \(\displaystyle H\) là khối lập phương có cạnh bằng một thì \(\displaystyle V_{(H)}=1\)

b) Nếu hai khối đa diện \(\displaystyle (H_1)\) và \(\displaystyle (H_2)\) bằng nhau thì

\(\displaystyle V_{(H_1)}\) = \(\displaystyle V_{(H_2)}\)

c) Nếu khối đa diện \(\displaystyle H\) được phân chia thành hai khối đa diện \(\displaystyle (H_1)\) và \(\displaystyle (H_2)\) thì

\(\displaystyle {V_{\left( H \right)}} = {V_{\left( {{H_1}} \right)}} + {V_{\left( {{H_2}} \right)}}\)

Số dương \(\displaystyle V_{(H)}\) nói trên được gọi là thể tích của khối đa diện \(\displaystyle H\).

Khối lập phương có cạnh bằng một được gọi là khối lập phương đơn vị.

Nếu \(\displaystyle H\) là khối lăng trụ \(\displaystyle ABC.A’B’C’\) chẳng hạn thì thể tích của nó còn được kí hiệu là \(\displaystyle V_{ABC.A'B'C'}\)

2. Thể tích khối lăng trụ

Thể tích của khối lăng trụ có diện tích đáy bằng \(\displaystyle B\) và chiều cao bằng \(\displaystyle h\) là

\(\displaystyle V = B.h\)

Đặc biệt thể tích của khối hộp chữ nhật bằng tích của ba kích thước của nó.

3. Thể tích khối chóp

Thể tích của khối chóp có diện tích đáy bằng \(\displaystyle B\) và chiều cao bằng \(\displaystyle h\) là

\(\displaystyle V = {1 \over 3}Bh\)

Kiến thức bổ sung

4. Cho hình chóp \(\displaystyle S.ABC\). Trên ba tia \(\displaystyle SA, SB, SC\) lần lượt lấy ba điểm \(\displaystyle A', B', C'\).

Khi đó \(\displaystyle {{{V_{{S_{A'B'C'}}}}} \over {{V_{{S_{ABC}}}}}} = {{SA'} \over {SA}}.{{SB'} \over {SB}}.{{SC'} \over {SC}}\)

5. Nếu \(\displaystyle H'\) là ảnh của \(\displaystyle H\) qua một phép dời hình thì

\(\displaystyle V_{(H')}\) = \(\displaystyle V_{(H)}\)

Nếu \(\displaystyle H'\) là ảnh của \(\displaystyle H\) qua một phép vị tự tỉ số \(\displaystyle k\) thì 

\(\displaystyle V_{(H')}\)= \(\displaystyle |k|^3.V_{(H)}\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved