Bài 1. Tập hợp. Phần tử của tập hợp
Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
Bài 13. Bội chung. Bội chung nhỏ nhất
Bài 2. Tập hợp các số tự nhiên. Ghi số tự nhiên
Bài 8. Dấu hiệu chia hết cho 3, cho 9
Bài 3. Các phép tính trong tập hợp số tự nhiên
Bài 5. Thứ tự thực hiện các phép tính
Bài 14. Hoạt động thực hành và trải nghiệm
Bài 7. Dấu hiệu chia hết cho 2, cho 5
Bài 12. Ước chung. Ước chung lớn nhất
Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
Bài 9. Ước và bội
Bài tập cuối chương 1
Bài 4. Lũy thừa với số mũ tự nhiên
Bài 11. Hoạt động thực hành và trải nghiệm
Lũy thừa với số mũ tự nhiên
Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
\({a^n} = a.a \ldots ..a\) (\(n\) thừa số \(a\) ) (\(n \notin \mathbb{N}^*\) )
\({a^n}\) đọc là “a mũ n” hoặc “a lũy thừa n”.
\(a\) được gọi là cơ số.
\(n\) được gọi là số mũ.
Phép nhân nhiều thừa số giống nhau như trên được gọi là phép nâng lên lũy thừa.
\({a^1} = a\)
\({a^2} = a.a\) gọi là “\(a\) bình phương” (hay bình phương của \(a\)).
\({a^3} = a.a.a\) gọi là “\(a\) lập phương” (hay lập phương của \(a\)).
Với \(n\) là số tự nhiên khác 0 (thuộc \(\mathbb{N}^*\)), ta có: \({10^n} = 1\underbrace {0...0}_{n{\rm{ \,chữ\, số\, 0}}}\)(số mũ là n thì có n chữ số 0 đằng sau chữ số 1)
Quy ước: \({a^1} = a\); \({a^0} = 1\left( {a \ne 0} \right).\)
Ví dụ:
a) \({8^3}\) đọc là “tám mũ ba”, có cơ số là 8 và số mũ là 3.
b) Tính \({2^3}\).
Số trên là lũy thừa bậc 3 của 2 và là tích của 3 thừa số 2 nhân với nhau nên ta có:
\({2^3} = 2.2.2 = 8\)
c) Tính \({10^3}\)
\({10^3}\) có số mũ là 3 nên \({10^3} = 1000\)(Sau chữ số 1 có 3 chữ số 0).
d) Viết 10 000 000 dưới dạng lũy thừa của 10:
Cách 1: \(10000000 = 10.10.10.10.10.10.10\)\( = {10^7}\)
Cách 2: Sau chữ số 1 có 7 chữ số 0 nên \(10000000 = {10^7}\)
e) Viết 16 dưới dạng lũy thừa cơ số 4:
\(16 = 4.4 = {4^2}\)
Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.
\({a^m}.{a^n} = {a^{m + n}}\)
Ví dụ:
a) \({3.3^5} = {3^1}{.3^5} = {3^{1 + 5}} = {3^6}.\)
b) \({5^2}{.5^4} = {5^{2 + 4}} = {5^6}\)
c) \({a^3}.{a^5} = {a^{3 + 5}} = {a^8}\)
d) \(x.{x^8} = {x^1}.{x^8} = {x^{1 + 8}} = {x^9}\)
e) \({4^2}.64 = {4^2}.4.4.4 = {4^2}{.4^3} = {4^{2 + 3}} = {4^5}\)
f) \(10.2.5 = 10.\left( {2.5} \right) = 10.10 = {10^2}\) (Sử dụng tính chất kết hợp trong phép nhân trước).
Phép chia hai lũy thừa cùng cơ số
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.
\({a^m}:{a^n} = {a^{m - n}}\) \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
Ví dụ:
a) \({3^5}:3 = {3^5}:{3^1} = {3^{5 - 1}} = {3^4}\)\( = 3.3.3.3 = 81\)
b) \({a^6}:{a^2} = {a^{6 - 2}} = {a^4}\)
c) \({2^3}:{2^3} = {2^{3 - 3}} = {2^0} = 1\)
d) \(81:{3^2} = {3^4}:{3^2} = {3^{4 - 2}} = {3^2} = 3.3 = 9\)
Lưu ý:
Phép chia hai lũy thừa cùng cơ số không thể lấy hai số mũ chia cho nhau mà phải lấy hai số mũ trừ cho nhau.
Đề kiểm tra 15 phút
Đề thi học kì 1
Chủ đề: Kết nối bạn bè
Đề thi học kì 1
Đề thi giữa học kì 2
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6