PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông

1. Hệ thức về cạnh và đường cao trong tam giác vuông 

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) (hình vẽ). Khi đó ta có các hệ thức sau:

 

+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\) hay \({c^2} = a.c'\) và \({b^2} = ab'\) (1)

+) \(H{A^2} = HB.HC\) hay \({h^2} = c'b'\) (2)

+) \(AB.AC = BC.AH\) hay \(cb = ah\) (3)

+) \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}}\) hay \(\dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{1}{{{b^2}}}\) (4).

+) \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago). 

2. Các dạng toán cơ bản

Dạng 1: Tính độ dài các đoạn thẳng trong tam giác vuông

Phương pháp:

Sử dụng hệ thức về cạnh và đường cao trong tam giác vuông.

Dạng 2: Chứng minh các hệ thức liên quan giữa các yếu tố trong tam giác vuông

Phương pháp:

Ta thường sử dụng các kiến thức:

- Đưa về hai tam giác đồng dạng có chứa các đoạn thẳng có trong hệ thức.

- Sử dụng các hệ thức về cạnh và đường cao trong tam giác vuông để chứng minh.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved