ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Lý thuyết nhị thức Niu - Tơn

I. Công thức nhị thức Niu - Tơn

1. Công thức nhị thức Niu - Tơn

Với \(a, b\) là những số thực tùy ý và với mọi số tự nhiên \(n ≥ 1\), ta có:

\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... +\)

\(C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}(1)\)

Ví dụ:

Viết khai triển \({\left( {a + b} \right)^5}\).

Hướng dẫn:

Ta có:

\({\left( {a + b} \right)^5}\)

\( = C_5^0{a^5} + C_5^1{a^4}b + C_5^2{a^3}{b^2}\) \( + C_5^3{a^2}{b^3} + C_5^4a{b^4} + C_5^5{b^5}\)

\( = {a^5} + 5{a^4}b + 10{a^3}{b^2}\) \( + 10{a^2}{b^3} + 5a{b^5} + {b^5}\)

2. Quy ước

Với \(a\) là số thực khác \(0\) và \(n\) là số tự nhiên khác \(0\), ta quy ước:

                \(a^0 = 1\); \(a^{-n}= {1 \over {{a^n}}}\).

3. Chú ý

Với các điều kiện và quy ước ở trên, đồng thời thêm điều kiện \(a\) và \(b\) đều khác \(0\), có thể viết công thức (1) ở dạng sau đây:

\({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k} = \sum\limits_{k = 0}^n {{a^k}{b^{n - k}}} } \)

Công thức này không xuất hiện trong SGK nên khi trình bày bài toán các em lưu ý không dùng. Chỉ dùng khi làm trắc nghiệm để các bước tính toán được ngắn gọn và nhanh ra đáp án.

II. Tam giác Pa-xcan

1. Tam giác Pa-xcan là tam giác số ghi trong bảng 

2. Cấu tạo của tam giác Pa-xcan

- Các số ở đầu và cuối hàng đều bằng \(1\).

- Xét hai số ở cột \(k\) và cột \(k + 1\), đồng thời cùng thuộc dòng \(n\), (\(k ≥ 0; n ≥1\)), ta có: tổng của hai số này bằng số đứng ở giao của cột \(k + 1\) và dòng \(n + 1\).

3. Tính chất của tam giác Pa-xcan

Từ cấu tạo của tam giác Pa-xcan, có thể chứng minh được rằng:

a) Giao của dòng \(n\) và cột \(k\) là \(C_n^k\)

b) Các số của tam giác Pa-xcan thỏa mãn công thức Pa-xcan:

\(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)

c) Các số ở dòng \(n\) là các hệ số trong khai triển của nhị thức \({(a + b)}^n\) (theo công thức nhị thức Niu - Tơn), với \(a, b\) là hai số thực tùy ý.

Chẳng hạn, các số ở dòng \(4\) là các hệ số trong khai triển của \((a + b)^4\) (theo công thức nhị thức Niu - Tơn) dưới đây:

\({\left( {a{\rm{ }} + {\rm{ }}b} \right)^4} \)\(= {\rm{ }}{a^4} + {\rm{ }}4{a^3}b{\rm{ }} + {\rm{ }}6{a^2}{b^{2}} + {\rm{ }}4a{b^3}{\rm{ }} + {\rm{ }}{b^4}\)

    

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved