PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.

I. Các kiến thức cần nhớ

1. Phương pháp

- Ta nhận xét để tìm cách nhóm hạng tử một cách thích hợp (có thể giao hoán và kết hợp các hạng tử để nhóm) sao cho sau khi nhóm, từng nhóm đa thức có thể phân tích được thành nhân tử bằng phương pháp đặt nhân tử chung, bằng phương pháp dùng hằng đẳng thức. Khi đó đa thức mới phải xuất hiện nhân tử chung.

- Ta áp dụng phương pháp đặt thành nhân tử chung để phân tích đa thức đã cho thành nhân tử.

2. Chú ý

- Với một đa thức, có thể có nhiều cách nhóm các hạng tử một cách thích hợp.

- Khi phân tích đa thức thành nhân tử ta phải phân tích đến cuối cùng (không còn phân tích được nữa).

- Dù phân tích bằng cách nào thì kết quả cũng là duy nhất.

- Khi nhóm các hạng tử, phải chú ý đến dấu của đa thức.

Ví dụ: \({x^2} + xy - 6x - 6y \)\(= x\left( {x + y} \right) - 6\left( {x + y} \right) \)\(= \left( {x + y} \right)\left( {x - 6} \right)\)

hoặc  \({x^2} + xy - 6x - 6y \)\(= \left( {{x^2} - 6x} \right) + \left( {xy - 6y} \right) \)\(= x\left( {x - 6} \right) + y\left( {x - 6} \right) \)\(= \left( {x - 6} \right)\left( {x + y} \right)\)

Các cách làm như trên gọi là phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.

II. Các dạng toán thường gặp

Dạng 1: Phân tích đa thức thành nhân tử

Phương pháp:

Sử dụng cách nhóm hạng tử để phân tích đa thức thành nhân tử.

Dạng 2: Tìm \({\bf{x}}\) .

Phương pháp:

Sử dụng cách nhóm hạng tử để biến đổi về dạng tìm \(x\) thường gặp.

Chẳng hạn \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)

Dạng 3: Tính giá trị của biểu thức thỏa mãn điều kiện cho trước

Phương pháp:

+ Biến đổi biểu thức để có thể sử dụng được điều kiện của đề bài.

+ Từ đó tính giá trị của biểu thức.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved