Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
1. Định nghĩa
Cho điểm \(O\). Phép biến hình biến điểm \(O\) thành chính nó, biến mỗi điểm \(M\) khác \(O\) thành \(M'\) sao cho \(O\) là trung điểm của đoạn thẳng \(MM'\) được gọi là phép đối xứng tâm \(O\).
\(O\) được gọi là tâm đối xứng
Phép đối xứng tâm \(O\) thường được kí hiệu là \({\text{Đ}_{O}}\)
Nếu hình \(H'\) là ảnh của hình \(H\) qua \({\text{Đ}_{O}}\) thì ta còn nói là \(H'\) đối xứng với \(H\) qua tâm \(O\), hay \(H\) và \(H'\) đối xứng với nhau qua \(O\).
\(M'\) = \({\text{Đ}_{O}}(M)\) \( ⇔\) \(\overrightarrow{OM'}\) = \(-\overrightarrow{OM}\)
2. Biểu thức tọa độ của phép đối xứng qua gốc tọa độ
\(\left\{\begin{matrix} {x}'= -x\\ {y}'= -y \end{matrix}\right.\)
3. Tính chất
+) Nếu \({\text{Đ}_{O}}\)(M) \(= M'\), \(N' =\) \({\text{Đ}_{O}}(N)\) thì \(\overrightarrow{M'N'}\) = \(-\overrightarrow{MN}\) từ đó suy ra \(M'N' = MN\)
+) Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính
4. Tâm đối xứng của một hình
Điểm \(O\) được gọi là tâm đối xứng của hình \(H\) nếu phép đối xứng tâm \(O\) biến \(H\) thành chính nó. Khi đó ta nói hình có tâm đối xứng.
Chương 4. Sinh sản ở sinh vật
Unit 4: Preserving World Heritage
Bài 5: Một số hợp chất quan trọng của nitrogen
Bài 15: Dẫn xuất halogen
Đề cương ôn tập học kì 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11