Lý thuyết phương trình mặt phẳng

1. Vectơ pháp tuyến của mặt phẳng.

* Cho mặt phẳng \((P)\) , vectơ  \(\overrightarrow{n}\neq \overrightarrow{0}\) mà giá của nó vuông góc với mặt phẳng \((P)\) thì \(\overrightarrow{n}\) được gọi là vectơ pháp tuyến của mặt phẳng \((P)\).

* Cho mặt phẳng \((P)\) , cặp vectơ  \(\overrightarrow{a}\neq \overrightarrow{0}\), \(\overrightarrow{b}\neq \overrightarrow{0}\) không cùng phương mà giá của chúng là hai đường thẳng song song hay nằm trong mặt phẳng \((P)\) được gọi là cặp vectơ chỉ phương của mặt phẳng \((P)\). Khi đó vectơ \(\overrightarrow{n}=\left [\overrightarrow{a}.\overrightarrow{b} \right ]\). là vectơ pháp tuyến của mặt phẳng \((P)\).

* Nếu \(\overrightarrow{a}\) \( = \;\left( {{a_1};{\rm{ }}\;{a_{2\;}};{\rm{ }}{a_3}} \right)\), \(\overrightarrow{b}\) \( = \;\left( {{b_1}\;;{\rm{ }}{b_2}\;;{\rm{ }}{b_3}} \right)\) thì :

         \(\overrightarrow{n}=\left [\overrightarrow{a}.\overrightarrow{b} \right ]=(\begin{vmatrix} a_{2}&a_{3} \\ b_{2}& b_{3} \end{vmatrix};\begin{vmatrix} a_{3} & a_{1}\\ b_{3}&b_{1} \end{vmatrix};\begin{vmatrix} a_{1} & a_{2}\\ b_{1}& b_{2} \end{vmatrix})\)

               \( = \left( {{a_2}{b_3}\;-{\rm{ }}{a_3}{b_{2\;}};{\rm{ }}{a_3}{b_1}\;-{\rm{ }}{a_1}{b_3}\;;{\rm{ }}{a_1}{b_2}\;-{\rm{ }}{a_2}{b_1}} \right).\)

* Mặt phẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của nó, hay một điểm thuộc mặt phẳng và cặp vectơ chỉ phương của nó.

2. Phương trình mặt phẳng.

* Mặt phẳng  \((P)\) qua điểm \({M_{0\;}}\left( {{x_0}\;;{\rm{ }}{y_{0\;}};{\rm{ }}{z_0}} \right){\rm{ }}\;\) và nhận \(\overrightarrow{n}\) \(\left( {A,{\rm{ }}B,{\rm{ }}C} \right)\) làm vectơ pháp tuyến có phương trình có dạng: \(A\left( {x\;-\;{x_0}} \right) + B\left( {y-{y_0}} \right) + C\left( {z-{z_0}} \right) = 0\)

* Mọi mặt phẳng trong không gian có phương trình tổng quát có dạng:

\(\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;Ax{\rm{ }} + {\rm{ }}By + Cz + D = 0{\rm{ }}\;{\rm{ }} \text {ở đó }\;{A^2} + {\rm{ }}{B^2}\; + {C^{2\;}} > 0.\) Khi đó vectơ \(\vec n\,(A;B;C)\) là vectơ pháp tuyến của mặt phẳng.

* Mặt phẳng đi qua ba điểm \(M\left( {a;0;0} \right),{\rm{ }}N\left( {0;b;0} \right),{\rm{ }}C\left( {0;0;c} \right)\) ở đó \(abc\; \ne 0\) có phương trình :\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\). Phương trình này còn được gọi là phương trình mặt phẳng theo đoạn chắn.

3. Vị trí tương đối của hai mặt phẳng.

 Cho hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có phương trình :

\(\begin{array}{*{20}{l}}
{\left( {{P_1}} \right):\;{A_1}x + {B_1}y\; + {C_1}z + {D_1}\; = 0;}\\
{\left( {{P_2}} \right):\;{A_2}x + {B_2}y\; + {C_2}z + {D_2}\; = 0.}
\end{array}\)

Ta có \(\overrightarrow {{n_1}} \;(A1;B1;C1) \bot (P1)\) và \(\overrightarrow {{n_2}} \;(A2;B2;C2) \bot (P2)\). Khi đó:

 \(({P_1})\; \bot \;({P_2})\)  ⇔ \(\overrightarrow{n_{1}}\perp \overrightarrow{n_{2}}\) ⇔ \(\overrightarrow{n_{1}}.\overrightarrow{n_{2}}\)  \(\; \Leftrightarrow {\rm{ }}{A_1}{A_2}\; + {\rm{ }}{B_1}{B_2}\; + {\rm{ }}{C_1}{C_2}\; = {\rm{ }}0\)

  \(\left( {{P_1}} \right)\;//\;\left( {{P_2}} \right)\;\; \Leftrightarrow \;\) \(\overrightarrow{n_{1}}=k.\overrightarrow{n_{2}}\) và  \({D_1}\; \ne {\rm{ }}k.{D_2}\;\left( {k\; \ne {\rm{ }}0} \right).\)

  \(\left( {{P_1}} \right) \equiv \;\left( {{P_2}} \right)\;\; \Leftrightarrow \;\) \(\overrightarrow{n_{1}}=k.\overrightarrow{n_{2}}\)  và  \(\;{D_1}\; = {\rm{ }}k.{D_{2.}}\)

  \(\left( {{P_1}} \right) \text {cắt} \left( {{P_2}} \right)\;\; \Leftrightarrow \;\) \(\overrightarrow{n_{1}}\neq k.\overrightarrow{n_{2}}\) (nghĩa là \(\overrightarrow{n_{1}}\) và \(\overrightarrow{n_{2}}\) không cùng phương).

4. Khoảng cách từ một điểm đến một mặt phẳng.

Trong không gian \(Oxyz\) cho mặt phẳng \((P)\) có phương trình:

             \(Ax + By + Cz +D = 0\) và điểm \({M_{0\;}}\left( {{x_0}\;;{\rm{ }}{y_{0\;}};{\rm{ }}{z_0}} \right).\) .Khoảng cách từ Mđến \((P)\) được cho bởi công thức:

\(d({M_0},P) = \frac{{|A{x_0} + B{y_0} + C{z_0} + D|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}.\)

5. Góc giữa hai  mặt phẳng.

Cho hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\)  có phương trình :

\(\begin{array}{*{20}{l}}
{\left( {{P_1}} \right):\;{A_1}x + {B_1}y\; + {C_1}z + {D_1}\; = 0;}\\
{\left( {{P_2}} \right):\;{A_2}x + {B_2}y\; + {C_2}z + {D_2}\; = 0.}
\end{array}\)

Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) thì \(0\; \le \;\varphi {\rm{ }} \le {\rm{ }}{90^{0\;}}\) và :

\(cos\varphi =|cos\widehat{\left (\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right )}|=\dfrac{|A_{1}A_{2}+B_{1}B_{2}+C_{1}C_{2}+D|}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}.\sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi