Toán 7 tập 1 - Chân trời sáng tạo

Lý thuyết Số vô tỉ. Căn bậc hai số học

 

1. Biểu diễn thập phân của một số hữu tỉ

Ví dụ: Các số thập phân đã học như -4,3 ; 0,35;… còn được gọi là số thập phân hữu hạn.

Các số -0,2(7) ; 1,3(18) ; 5,(1) ;…. là những số thập phân vô hạn tuần hoàn với chu kì lần lượt là 7 ; 18 ; 1.

+ Mỗi số thập phân vô hạn tuần hoàn biểu diễn 1 số hữu tỉ. Chữ số hay cụm chữ số lặp đi lặp lại được gọi là chu kì.

Chú ý:

+ Mọi số hữu tỉ đều viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.

+ Nếu phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố nào khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.

Ví dụ: \(\frac{3}{{80}} = \frac{3}{{{2^4}.5}} = \frac{{{{3.5}^3}}}{{{2^4}{{.5.5}^3}}} = \frac{{375}}{{10000}} = 0,0375\)

+ Nếu phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.

Ví dụ: \(\frac{7}{{30}} = 0,2333.... = 0,2(3)\)

2. Số vô tỉ

Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

Ví dụ: \(\pi  = 3,1415926.....;e = 2,71828.....;....\)là những sô vô tỉ

Tập hợp các số vô tỉ được kí hiệu là I

3. Căn bậc hai số học

Căn bậc hai số học của một số a không âm, kí hiệu \(\sqrt a \), là số x không âm sao cho x2 = a.

Ví dụ: \(\sqrt {121}  = 11\) vì 11 > 0 và 112 = 121

Chú ý: Cho \(a \ge 0\). Khi đó:

+ Đẳng thức \(\sqrt a  = b\) đúng nếu \(b \ge 0;{b^2} = a\)

+ \({\left( {\sqrt a } \right)^2} = a\)

4. Tính căn bậc hai số học bằng máy tính cầm tay

Ví dụ: Tính \(\sqrt {25} \)

Ta bấm liên tiếp các nút:

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved