Lý thuyết Tỉ số và tỉ số phần trăm

I. Tỉ số

a) Tỉ số của hai số

Tỉ số của hai số $ a$  và $ b$  tùy ý $ \left( {b \ne 0} \right)$  là thương của phép chia số $ a$  cho số $ b$ . Kí hiệu là $ a:b$  hoặc $ \dfrac{a}{b}$ .

Chú ý: Nếu tỉ số của $ a$  và $ b$  được viết dưới dạng $ \dfrac{a}{b}$  thì ta cũng gọi $ a$  là tử số và $ b$  là mẫu số.

Ví dụ:

Tỉ số của $  - 5$  và $ 7$  là: $ \dfrac{{ - 5}}{7}$ .

b) Tỉ số của hai đại lượng

Tỉ số của hai đại lượng cùng loại và cùng đơn vị đo là tỉ số giữa hai số đo của hai đại lượng đó.

Nhận xét:

Tỉ số của hai đại lượng thể hiện độ lớn của đại lượng này so với đại lượng kia.

Chú ý:

- Phân số $ \dfrac{a}{b}$  thì cả $ a$  và $ b$  phải là các số nguyên.

- Tỉ số $ \dfrac{a}{b}$  thì $ a$  và $ b$  có thể là các số nguyên, phân số, hỗn số, số thập phân,…

Ví dụ:

Tỉ số chiều dài hai đoạn thẳng $ AB = 1,5\,\,\,cm$  và $ CD = \dfrac{1}{3}\,cm$  là: $ 1,5:\dfrac{1}{3}$ .

II. Tỉ số phần trăm

 Tỉ số phần trăm của a và b là $ \dfrac{a}{b}.100\% $ .

Ví dụ:

a) Tỉ số phần trăm của $ 3$ và $ 6$ là:

$ \dfrac{{3.100}}{6}\% = \dfrac{{300}}{6}\% = 50\% .$

b) Tỉ số phần trăm của $ - 2,3$ và $ 10$  là: $ \dfrac{{ - 2,3.100}}{{10}}\% = - 23\% $

Chú ý: Tỉ số $ \dfrac{{a.100}}{b}$  không nhất thiết là số nguyên.

III. Tính tỉ số của hai số

Để tính tỉ số của hai số ta tính $ a:b$  hoặc $ \dfrac{a}{b}$  $ \left( {b \ne 0} \right)$

IV. Tính tỉ số phần trăm của hai đại lượng

Để tính tỉ số phần trăm của a và b, ta làm như sau:

Bước 1. Viết tỉ số $ \dfrac{a}{b}$

Bước 2. Tính số $ \dfrac{{a.100}}{b}$  và viết thêm % vào bên phải số vừa nhận được.

V. Viết các số thập phân, phân số dưới dạng tỉ số phần trăm và ngược lại

- Viết một số a dưới dạng dùng kí hiệu %: \(a = \dfrac{{a.100}}{{100}} = (100.a)\% \)

- Viết \(a\% \) dưới dạng phân số: \(a\%  = \dfrac{a}{{100}}\)

- Đổi số thập phân ra phân số: \(\overline {a,bc}  = \dfrac{{\overline {abc} }}{{100}} = \overline {abc} \% ;\,\,\,\,\,\overline {a,{b_1}{b_2}...{b_n}}  = \dfrac{{a{b_1}{b_2}...{b_n}}}{{{{10}^n}}}\)

- Một phân số tối giản có mẫu số chỉ có ước số nguyên tố là 2 hoặc 5 thì có thể viết dưới dạng số thập phân (hữu hạn).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi