Lý thuyết Tích của vecto mới một số

Lý thuyết Tích của vecto mới một số - SGK Toán 10 Cánh Diều

I. ĐỊNH NGHĨA

+) Tích của một vecto \(\overrightarrow a  \ne \overrightarrow 0 \) với một số thực \(k\) là một vecto, kí kiệu là \(k\overrightarrow a .\)

+) Vecto \(k\overrightarrow a \) có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\) và

 Cùng hướng với vecto \(\overrightarrow a \) nếu \(k > 0\)

 Ngược hướng với vecto \(\overrightarrow a \) nếu \(k < 0\)

II. TÍNH CHẤT

+) Với hai vecto \(\overrightarrow a ,\overrightarrow b \) và hai số thực \(k,t\) ta luôn có:

\(\begin{array}{l}k(t\overrightarrow a ) = (kt)\;\overrightarrow a \\(k + t)\,\overrightarrow a  = k\overrightarrow a  + t\overrightarrow a \\k(\overrightarrow a  + \overrightarrow b ) = k\overrightarrow a  + k\overrightarrow b ;\quad k(\overrightarrow a  - \overrightarrow b ) = k\overrightarrow a  - k\overrightarrow b \\1\;\overrightarrow a  = \overrightarrow a ;\;\;( - 1)\;\overrightarrow a  =  - \,\overrightarrow a \end{array}\)

III. MỘT SỐ ỨNG DỤNG

1. Trung điểm của đoạn thẳng:

I là trung điểm của AB \( \Leftrightarrow \overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \)

Với M bất kì, \( \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \)

2. Trọng tâm của tam giác:

G là trọng tâm \(\Delta ABC\) \( \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Với M bất kì \( \overrightarrow {MA}  + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

3. Điều kiện để hai vecto cùng phương; 3 điểm thẳng hàng

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương \(\Leftrightarrow \exists k: \overrightarrow a  = k\overrightarrow b .\) 

+ A, B, C thẳng hàng \( \Leftrightarrow \overrightarrow {AB}  = k\overrightarrow {AC} .\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved