Bài 1. Tập hợp. Phần tử của tập hợp
Bài 6. Chia hết và chia có dư. Tính chất chia hết của một tổng
Bài 13. Bội chung. Bội chung nhỏ nhất
Bài 2. Tập hợp các số tự nhiên. Ghi số tự nhiên
Bài 8. Dấu hiệu chia hết cho 3, cho 9
Bài 3. Các phép tính trong tập hợp số tự nhiên
Bài 5. Thứ tự thực hiện các phép tính
Bài 14. Hoạt động thực hành và trải nghiệm
Bài 7. Dấu hiệu chia hết cho 2, cho 5
Bài 12. Ước chung. Ước chung lớn nhất
Bài 10. Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
Bài 9. Ước và bội
Bài tập cuối chương 1
Bài 4. Lũy thừa với số mũ tự nhiên
Bài 11. Hoạt động thực hành và trải nghiệm
I. Ước chung
1. Định nghĩa
+ Ước chung của hai hay nhiều số là ước của tất cả các số đó.
2. Kí hiệu
+ ƯC\(\left( {a;b} \right)\) là tập hợp các ước chung của \(a\) và \(b\).
3. Cách tìm ước chung
a) Tìm ước chung của hai số a và b
Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
Ví dụ: Ư\(\left( 8 \right) = \left\{ {1;2;4;8} \right\}\); Ư\(\left( {12} \right) = \left\{ {1;2;3;4;6;12} \right\}\)
Nên ƯC\(\left( {8;12} \right) = \left\{ {1;2;4} \right\}\)
b) Tìm ước chung của ba số a, b và c
Bước 1: Viết tập hợp các ước của a, của b và của c: Ư(a), Ư(b), Ư(c)
Bước 2: Tìm những phần tử chung của Ư(a), Ư(b) và Ư(c).
Nhận xét:
+) \(x \in \)ƯC\(\left( {a;b} \right)\) nếu \(a \vdots x\) và \(b \vdots x.\)
+) \(x \in \)ƯC\(\left( {a;b;c} \right)\) nếu \(a \vdots x\) ; \(b \vdots x\) và \(c \vdots x.\)
Chú ý:
+ Giao của hai tập hợp là một tập hợp gồm các phần tử chung của hai tập hợp đó.
+ Kí hiệu: Giao của tập hợp A và tập hợp B là \(A \cap B\)
Ví dụ: Ư\(\left( 8 \right) \cap \) Ư\(\left( {12} \right) = \)ƯC\(\left( {8;12} \right)\).
1. Định nghĩa
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
Nếu ước chung lớn nhất của hai số a và b bằng 1 thì ta nói, a và b là hai số nguyên tố cùng nhau.
2. Kí hiệu
+) ƯCLN\(\left( {a,b} \right)\) là ước chung lớn nhất của \(a\) và \(b\).
+) ƯC\(\left( {a;b} \right)\) là tập hợp còn ƯCLN\(\left( {a,b} \right)\) là một số.
3. Các cách tìm ước chung lớn nhất bằng định nghĩa
a) Cách tìm ƯCLN trong trường hợp đặc biệt
+) Trong các số cần tìm ƯCLN có số nhỏ nhất là ước của những số còn lại thì số đó là ƯCLN cần tìm:
Nếu \(a \vdots b\) thì ƯCLN \(\left( {a;b} \right) = b\)
+) Số 1 chỉ có 1 ước là 1 nên với mọi số tự nhiên a và b ta có:
ƯCLN\(\left( {a,1} \right)\) =1 và ƯCLN\(\left( {a,b,1} \right)\)=1
b) Cách tìm ƯCLN của hai số a và b bằng định nghĩa
Bước 1. Tìm tập hợp các ước chung của hai số a và b: ƯC\(\left( {a;b} \right)\)
Bước 2. Tìm số lớn nhất trong các ước chung vừa tìm được: ƯCLN\(\left( {a,b} \right)\)
Ví dụ : Tìm ƯCLN (18 ; 30)
Ta có :
Ư(18)=\(\left\{ {1;2;3;6;9;18} \right\}\)
Ư(30)=\(\left\{ {1;2;3;5;6;10;15;30} \right\}\)
ƯC(18;30)={1;2;3;6}
Số lớn nhất trong các số 1, 2, 3, 6 là số 6.
Vậy ƯCLN (18 ; 30)=6
1. Cách tìm ước chung lớn nhất –ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
Ví dụ : Tìm ƯCLN (18 ; 30)
Ta có :
Bước 1 : phân tích các số ra thừa số nguyên tố.
18 = 2.32
30 = 2.3.5
Bước 2 : Thừa số nguyên tố chung là \(2\) và \(3\)
Bước 3 : ƯCLN\(\left( {18;30} \right) = 2.3 = 6\)
Chú ý:
+ Nếu các số đã cho không có thừa số nguyên tố chung thì ƯCLN của chúng bằng 1.
+ Hai hay nhiều số có ƯCLN bằng 1 gọi là các số nguyên tố cùng nhau.
2. Cách tìm ƯC thông qua ƯCLN
Để tìm ước chung của các số đã cho, ta có tể tìm các ước của ƯCLN của các số đó.
Ví dụ: ƯCLN\(\left( {18;30} \right) = 2.3 = 6\)
Từ đó ƯC\(\left( {18;30} \right) = \)Ư\(\left( 6 \right) = \left\{ {1;2;3;6} \right\}\)
Rút gọn phân số: Chia cả tử và mẫu cho ước chung khác 1 (nếu có) của chúng.
Phân số tối giản: \(\dfrac{a}{b}\) là phân số tối giản nếu ƯCLN\(\left( {a,b} \right) = 1\)
Đưa một phân số chưa tối giản về phân số tối giản: Chia cả tử và mẫu cho ƯCLN\(\left( {a,b} \right)\).
Ví dụ: Phân số \(\dfrac{9}{{24}}\) tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản.
Ta có: ƯCLN\(\left( {9,24} \right) = 3\) khác 1 nên \(\dfrac{9}{{24}}\) chưa tối giản.
Ta có: \(\dfrac{9}{{24}} = \dfrac{{9:3}}{{24:3}} = \dfrac{3}{8}\). Ta được \(\dfrac{3}{8}\) là phân số tối
giản.
CÁC DẠNG TOÁN VỀ ƯỚC CHUNG, ƯỚC CHUNG LỚN NHẤT
Phương pháp:
Để nhận biết một số là ước chung của hai số, ta kiểm tra xem hai số đó có chia hết cho số này hay không.
Để viết tập hợp các ước chung của hai hay nhiều số, ta viết tập hợp các ước của mỗi số rồi tìm giao của các tập hợp đó.
Phương pháp:
Phân tích bài toán để đưa về việc tìm ước chung, ƯCLN của hai hay nhiều số.
Ví dụ:
Một bác thợ mộc muốn làm kệ để đồ từ hai tấm gỗ dài 18 dm và 30 dm. Bác muốn cắt hai tấm gỗ này thành các thanh gỗ có cùng độ dài mà không để thừa mẩu gỗ nào. Em hãy giúp bác thợ mộc tìm độ dài lớn nhất có thể của mỗi thanh gỗ được cắt.
Giải
Độ dài lớn nhất các thanh gỗ được cắt chính là ƯCLN của 18 và 30.
Ta có: ƯCLN(18; 30)= 6
Vậy độ dài lớn nhất có thể của các thanh gỗ được cắt là 6 dm.
Phương pháp:
+ Tìm ƯCLN của hai hay nhiều số cho trước.
+ Tìm các ước của ƯCLN.
+ Chọn trong số đó các ước hoặc các bội thỏa mãn điều kiện đã cho.
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
Tài liệu Dạy - học Toán Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6