GIẢI TOÁN 6 SỐ VÀ ĐẠI SỐ TẬP 1 CHÂN TRỜI SÁNG TẠO

Lý thuyết Ước và bội

I. Ước và bội

- Nếu có số tự nhiên \(a\) chia hết cho số tự nhiên \(b\) thì ta nói \(a\)bội của \(b,\) còn \(b\)ước của \(a.\)

- Kí hiệu: Ư\(\left( a \right)\) là tập hợp các ước của \(a\)\(B\left( b \right)\) là tập hợp các bội của \(b\).

- Với \(a\) là số tự nhiên khác 0 thì:

 + \(a\) là ước của \(a\)

 + \(a\) là bội của \(a\)

 + 0 là bội của \(a\)

 + 1 là ước của \(a\)

Ví dụ : \(12 \vdots 6 \Rightarrow 12\) là bội của \(6.\) Còn \(6\) được gọi là ước của \(12\)

0 và 12 là bội của 12

1 và 12 là các ước của 12.

II. Cách tìm ước

Ta có thể tìm các ước của \(a\)\(\left( {a > 1} \right)\)  bằng cách lần lượt chia \(a\) cho các số tự nhiên từ \(1\) đến \(a\) để xét xem \(a\) chia hết cho những số nào, khi đó các số ấy là ước của \(a.\)

Ví dụ:

16:1=16; 16:2=8; 16:4=4; 16:8=2; 16:16=1

Vậy các ước của 16 là 1;2;4;8;16.

Tập hợp các ước của 16 là:  Ư\(\left( {16} \right) = \left\{ {1;2;4;8;16} \right\}\)

III. Cách tìm bội

Ta có thể tìm các bội của một số tự nhiên \(a\) khác \(0\) bằng cách nhân số đó lần lượt với \(0,1,2,3,...\)

Chú ý:

Bội của \(a\) có dạng tổng quát là \(a.k\) với \(k \in \mathbb{N}\). Ta có thể viết:

\(B\left( a \right) = \left\{ {a.k\left| {k \in \mathbb{N}} \right.} \right\}\)

Ví dụ:

Ta lấy 6 nhân với từng số 0 thì được 0 nên 0 là bội của 6, lấy 6.1=6 nên 6 là bội của 6, 6.2=12 nên 12 là bội của 6,...

Vậy \(B\left( 6 \right) = \left\{ {0;6;12;18;...} \right\}\)

CÁC DẠNG TOÁN VỀ ƯỚC VÀ BỘI

I. Viết tất cả các số là ước của một số cho trước và thỏa mãn điều kiện cho trước

Phương pháp:

 Tìm trong các số thỏa mãn điều kiện cho trước những số là ước của số đã cho. 

Ví dụ:

Tìm các số tự nhiên $a$ sao cho \(a \in \) Ư$\left( {32} \right)$ và $a > 10$.

Giải:

$\,\left\{ \begin{array}{l}a \in Ư\left( {32} \right)\\a > 10\end{array} \right. \Rightarrow \,\left\{ \begin{array}{l}a \in {\rm{\{ 1; 2; 4; 8; 16; 32\} }}\\a > 10\end{array} \right.$

$ \Rightarrow a \in \left\{ {16;32} \right\}$

II. Viết tất cả các số là bội của một số cho trước và thỏa mãn điều kiện cho trước

Phương pháp:

 Tìm trong các số thỏa mãn điều kiện cho trước những số là bội của số đã cho.

Ví dụ:

Tìm các số tự nhiên $x\; \in B\left( {8} \right)$ và $10

Giải:

$\,\,\left\{ \begin{array}{l}x \in B\left( 8 \right)\\10

Vậy có \(2\) số thỏa mãn yêu cầu bài toán là $16$ và $24$.

III. Bài toán đưa về việc tìm ước hoặc bội của một số cho trước

Phương pháp:

+ Phân tích đề bài chuyển bài toán về việc tìm ước hoặc bội của một số cho trước.

+ Áp dụng cách tìm ước hoặc bội của một số cho trước.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved