PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Lý thuyết về căn bậc hai

 

1. Căn thức bậc hai

Căn bậc hai số học

Số dương a có đúng hai căn bậc hai là: $\sqrt a $ và $-\sqrt a $

Với số dương $a$, số $\sqrt a $ được gọi là căn bậc hai số học của $a$.

Số $0$ cũng được gọi là căn bậc hai số học của $0$.

+) $\sqrt a  = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.$

+) So sánh hai căn bậc hai số học:

Với hai số $a,b$ không âm ta có $a < b \Leftrightarrow \sqrt a< \sqrt b $.

Căn thức bậc hai

Với $A$ là một biểu thức đại số, người ta gọi $\sqrt A $ là căn thức bậc hai của $A$. Khi đó, $A$ được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.

$\sqrt A $ xác định hay có nghĩa khi $A$ lấy giá trị không âm.

Chú ý.:

Với \(a \ge 0,\) ta có:

+ Nếu \(x = \sqrt a \) thì \(\left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)

+ Nếu \(\left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)  thì \(x = \sqrt a .\)

Ta viết \(x = \sqrt a  \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = a\end{array} \right.\)

2. So sánh các căn bậc hai số học 

ĐỊNH LÍ:

Với hai số \(a;b\) không âm ta có \(a < b \Leftrightarrow \sqrt a  < \sqrt b \) 

Ví dụ: So sánh 3 và \(\sqrt 7\) 

Ta có: \(3 = \sqrt 9 \) mà \(9 > 7\) suy ra \(\sqrt 9  > \sqrt 7 \) hay \(3 > \sqrt 7 \)

Hằng đẳng thức $\sqrt {{A^2}}  = \left| A \right|$  

Với mọi số $a$, ta có $\sqrt {{a^2}}  = \left| a \right|$.

Một cách tổng quát, với $A$ là một biểu thức ta có

$\sqrt {{A^2}}  = \left| A \right|$ nghĩa là

$\sqrt {{A^2}}  = A$ nếu $A \ge 0$ và $\sqrt {{A^2}}  =  - A$ nếu $A < 0$.

3. Một số dạng toán thường gặp

Dạng 1: Tìm căn bậc hai số học và so sánh hai căn bậc hai.

Phương pháp:

Sử dụng kiến thức với hai số $a,b$ không âm ta có $a < b \Leftrightarrow \sqrt a  < \sqrt b $.

 

Dạng 2: Tính giá trị của biểu thức chứa căn bậc hai

Phương pháp:

Sử dụng hằng đẳng thức  $\sqrt {{A^2}}  = \left| A \right| = \left\{ \begin{array}{l}\,\,\,\,A\,\,\,\,\,{\rm{khi}}\,\,\,A \ge 0\\ - A\,\,\,\,\,\,{\rm{khi}}\,\,\,A < 0\end{array} \right.$

Dạng 3: Rút gọn biểu thức chứa căn bậc hai

Phương pháp:

- Đưa các biểu thức dưới dấu căn về hằng đẳng thức  (thông thường là ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$)

- Sử dụng hằng đẳng thức  $\sqrt {{A^2}}  = \left| A \right| = \left\{ \begin{array}{l}\,\,\,\,A\,\,\,\,\,{\rm{khi}}\,\,\,A \ge 0\\ - A\,\,\,\,\,\,{\rm{khi}}\,\,\,A < 0\end{array} \right.$

Dạng 4: Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa

Phương pháp:

Sử dụng kiến thức biểu thức $\sqrt A $ có nghĩa khi và chỉ khi $A \ge 0.$

Dạng 5: Giải phương trình chứa căn bậc hai

Phương pháp:

Ta chú ý một số phép biến đổi tương đương liên quan đến căn thức bậc hai sau đây:

\(\sqrt A  = B \Leftrightarrow \left\{ \begin{array}{l}B \ge 0\\A = {B^2}\end{array} \right.\) ;                                         \(\sqrt {{A^2}}  = B \Leftrightarrow \left| A \right| = B\)

\(\sqrt A  = \sqrt B  \Leftrightarrow \left\{ \begin{array}{l}A \ge 0\left( { B \ge 0} \right)\\A = B\end{array} \right.\) ;                      \(\sqrt {{A^2}}  = \sqrt {{B^2}}  \Leftrightarrow \left| A \right| = \left| B \right| \Leftrightarrow A =  \pm B\)

 
Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved