Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
1.Một số hệ thức về cạnh và góc trong tam giác vuông
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = a,AC = b,AB = c.\) Ta có :
\(b = a.\sin B = a.\cos C\); \(c = a.\sin C = a.\cos B;\)
\(b = c.\tan B = c.\cot C\); \(c = b.\tan C = b.\cot B.\)
Trong một tam giác vuông
+) Cạnh góc vuông $=$ (cạnh huyền ) $\times $ (sin góc đối)
$=$ (cạnh huyền ) $\times $ (cosin góc kề)
+) Cạnh góc vuông $=$ (cạnh góc vuông còn lại ) $\times $ (tan góc đối)
$=$ (cạnh góc vuông còn lại ) $\times $ (cot góc kề).
Chú ý
Trong một tam giác vuông nếu cho trước hai yếu tố (trong đó có ít nhất một yếu tố về cạnh và không kể góc vuông) thì ta sẽ tìm được các yếu tố còn lại.
2. Các dạng toán thường gặp
Dạng 1: Giải tam giác vuông
Phương pháp:
+ Giải tam giác là tính độ dài các cạnh và số đo các góc dựa vào dữ kiện cho trước của bài toán.
+ Trong tam giác vuông, ta dùng hệ thức giữa cạnh và các góc của một tam giác vuông để tính toán.
+ Các bài toán về giải tam giác vuông bao gồm :
Bài toán 1: Giải tam giác vuông khi biết độ dài một cạnh và số đo một góc nhọn.
Bài toán 2: Giải tam giác vuông khi biết độ dài hai cạnh.
Dạng 2: Tính cạnh và góc của tam giác
Phương pháp:
Bằng cách kẻ thêm đường cao ta làm xuất hiện tam giác vuông để áp dụng các hệ thức giữa cạnh và góc thích hợp.
Đề kiểm tra 15 phút - Học kì 2 - Sinh 9
Tải 30 đề kiểm tra giữa kì 1 Toán 9
CHƯƠNG IV. SỰ BẢO TOÀN VÀ CHUYỂN HÓA NĂNG LƯỢNG
CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN
Unit 4: Learning A New Language - Học một ngoại ngữ