Trả lời câu hỏi 2 - Mục Luyện tập vận dụng trang 53

1. Nội dung câu hỏi

Cho tam giác $A B C$ có $\mathrm{G}$ là trọng tâm. Đường thẳng qua $\mathrm{G}$ song song với $\mathrm{BC}$ lần lượt cắt $\mathrm{AB}, \mathrm{AC}$ tại $\mathrm{M}, \mathrm{N}$. Chứng minh $\frac{A M}{A B}=\frac{A N}{A C}=\frac{2}{3}$.

 

2. Phương pháp giải

Sử dụng định lý Thales để chứng minh $\frac{A M}{A B}=\frac{A N}{A C}=\frac{2}{3}$.

 

3. Lời giải chi tiết

Gọi $A D$ là đường trung tuyến của tam giác $A B C(D \in B C)$
Vì G là trọng tâm của tam giác $A B C$ nên $A G=\frac{2}{3} A D$ hay $\frac{A G}{A D}=\frac{2}{3}$.
Xét tam giác $A B D$ với $M G / / B D$, ta có:
$\frac{A M}{A B}=\frac{A G}{A D}=\frac{2}{3}$ (Định lí Thales) (1)
Tương tự, xét
tam giác ADC với GN // DC, ta có:
$\frac{A N}{A C}=\frac{A G}{A D}=\frac{2}{3}$ (Định lí Thales) (2)
Từ (1) và (2) suy ra $\frac{A M}{A B}=\frac{A N}{A C}=\frac{2}{3}$ (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved