Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Nêu phương pháp chứng minh.
- Đường thẳng song song với đường thẳng;
- Đường thẳng song song với mặt phẳng;
- Mặt phẳng song song với mặt phẳng.
Lời giải chi tiết
*) Chứng minh đường thẳng song song với đường thẳng:
Để chứng minh hai đường thẳng song song, ta sử dụng các định lí.
- Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song với nhau.
- Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
- Cho đường thẳng \(d\) song song với mặt phẳng \((α)\). Nếu mặt phẳng \((β)\) chứa \(d\) và cắt \((α)\) theo giao tuyến d’ thì d’ song song với d.
- Hai mặt phẳng phân biệt cùng song song với với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Một mặt phẳng cắt hai mặt phẳng song song cho hai giao tuyến song song.
- Sử dụng các phương pháp của hình học phẳng. Tính chất đường trung bình, định lí Ta-lét đảo, cạnh đối hình bình hành…
- Sử dụng tính chất về cạnh bên, cạnh đáy của hình lăng trụ.
*) Chứng minh đường thẳng song song với mặt phẳng
- Chứng minh \(d\) song song với đường thẳng \(d’\) nằm trong \((α)\) và \(d\) không thuộc\((α)\).
- Có hai mặt phẳng song song, bất kì đường nào nằm trong hai mặt phẳng này cũng song song với mặt phẳng kia.
*) Chứng minh mặt phẳng song song với mặt phẳng
- Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau song song với mặt phẳng kia.
- Chứng minh hai mặt phẳng đó cùng song song với mặt phẳng thứ ba.
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Unit 9: Education in the future
SGK Ngữ văn 11 - Chân trời sáng tạo tập 2
SBT Ngữ văn 11 - Chân trời sáng tạo tập 2
CHƯƠNG IV- TỪ TRƯỜNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11