Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Xem hình 45. Hãy chứng minh định lý trên.
Phương pháp giải - Xem chi tiết
Sử dụng:
Số đo góc nội tiếp bằng nửa số đo cung bị chắn.
Số đo cả đường tròn bằng \(360^0.\)
Lời giải chi tiết
Xét đường tròn \((O)\) ta có:
\(\widehat {BAD} = \dfrac{1}{2}sđ\,\overparen {BCD}\) (góc nội tiếp chắn cung \(BCD\))
\(\widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BAD}\) (góc nội tiếp chắn cung \(BAD\))
Suy ra \(\widehat {BAD} + \widehat {BCD} = \dfrac{1}{2}sđ\,\overparen {BCD} + \dfrac{1}{2}sđ\,\overparen {BAD} = \dfrac{{sđ\,\overparen {BAD} + sđ\,\overparen {BCD}}}{2}\) \( = \dfrac{{360^\circ }}{2} = 180^\circ .\)
Vậy \(\widehat {BAD} + \widehat {BCD} = 180^\circ \) .
Vậy trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \(180^0\).
Bài 39. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo (tiếp theo)
Các thể loại văn tham khảo lớp 9
Đề thi vào 10 môn Văn Bến Tre
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2
Bài 5