PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Trả lời câu hỏi Bài 8 trang 91 Toán 9 Tập 2

Đề bài

a) Vẽ đường tròn tâm O bán kính R = 2cm.

b) Vẽ một lục giác đều ABCDEF có tất cả các đỉnh nằm trên đường tròn (O).

c) Vì sao tâm O cách đều các cạnh của lục giác đều ? Gọi khoảng cách này là r.

d) Vẽ đường tròn (O; r).

Phương pháp giải - Xem chi tiết

c) Sử dụng hai dây bằng nhau thì cách đều tâm.

Lời giải chi tiết

 

a)

b) Lục giác đều chứa 6 tam giác đều bằng nhau có cạnh = độ dài bán kính

Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lí liên hệ giữa dây cung và khoảng cách từ tâm đến dây)

Áp dụng định lí Pytago trong tam giác vuông OAH, ta có:

\(OH^2+AH^2 = OA^2\)

\(\Rightarrow r^2 + 1^2 = 2^2\)

\(\Rightarrow r^2 =3\)

\(\Rightarrow r= \sqrt{3}\) cm

d) Vẽ đường tròn tâm O, bán kính \( r = \sqrt{3}\) cm

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved