PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Trả lời phần câu hỏi ôn tập chương 4: Hàm số y=ax^2-Phương trình bậc hai một ẩn trang 60, 61 SGK toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu hỏi 1
Câu hỏi 2
Câu hỏi 3
Câu hỏi 4
Câu hỏi 5
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu hỏi 1
Câu hỏi 2
Câu hỏi 3
Câu hỏi 4
Câu hỏi 5

Câu hỏi 1

Câu hỏi 1

Hãy vẽ đồ thị của các hàm số Dựa vào đồ thị để trả lời các câu hỏi sau:

a) Nếu a > 0 thì hàm số  đồng biến khi nào? Nghịch biến khi nào?

Với giá trị nào của x thì hàm số đạt giá trị nhỏ nhất? Có giá trị nào của x để hàm số đạt giá trị lớn nhất không? 

Nếu a < 0 thì hàm số đồng biến khi nào? Nghịch biến khi nào? Với giá trị nào của x thì hàm số đạt giá trị lớn nhất? Có giá trị nào của x để hàm số đạt giá trị nhỏ nhất không?

b) Đồ thị của hàm số  có những đặc điểm gì (trường hợp a > 0 , trường hợp a < 0)

Phương pháp giải:

Dựa vào tính chất và đặc điểm của đồ thị hàm số

Lời giải chi tiết:

Vẽ đồ thị: 

a) Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0. 

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị nào của x để hàm số đạt giá trị nhỏ nhất.

b) Đồ thị hàm số  là đường cong (đặt tên là parabol) đi qua gốc tọa độ nhận trục tung Oy làm trục đối xứng. 

Nếu a > 0 thì đồ thị nằm trên trục hoành, điểm O là điểm thấp nhất đồ thị (gọi là đỉnh parabol).

Nếu a < 0 thì đồ thị nằm bên dưới trục hoành, điểm O là điểm cao nhất của đồ thị. 

Câu hỏi 2

Câu hỏi 2

Đối với phương trình bậc hai hãy viết công thức tính  

Khi nào thì phương trình vô nghiệm?

Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.

Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.

Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt? 

Phương pháp giải:

Dựa vào kiến thức về công thức nghiệm và công thức nghiệm thu gọn

Lời giải chi tiết:

* Xét phương trình bậc hai một ẩn

và biệt thức với  

TH1. Nếu  (hoặc thì phương trình vô nghiệm.

TH2. Nếu (hoặc  thì phương trình có nghiệm kép: (hoặc  )

TH3. Nếu  (hoặc  thì phương trình có hai nghiệm phân biệt: (hoặc )

* Khi a và c trái dấu thì nên , do đó phương trình  có hai nghiệm phân biệt.

Câu hỏi 3

Câu hỏi 3

Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai 

Nêu điều kiện để phương trình  có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình

Nêu điều kiện để phương trình  có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình  

Phương pháp giải:

Áp dụng kiến thức về hệ thức Vi-et và ứng dụng

tại đây.

Lời giải chi tiết:

+ Hệ thức Vi-ét:

Nếu  là hai nghiệm của phương trình  thì:

 

+) Nếu phương trình  có thì phương trình có một nghiệm , còn nghiệm kia là

Áp dụng: Phương trình  nên , do đó phương trình có một nghiệm , còn nghiệm kia là

+) Nếu phương trình   có thì phương trình có nghiệm là , còn nghiệm kia là .

Áp dụng: Phương trình  có nên , do đó phương trình có một nghiệm , còn nghiệm kia là

Câu hỏi 4

Câu hỏi 4

Nêu cách tìm hai số, biết tổng S và tích P của chúng.

Tìm hai số u và v trong mỗi trường hợp sau:

Phương pháp giải:

Tìm hai số khi biết tổng và tích của chúng

Nếu hai số có tổng bằng và tích bằng thì hai số đó là hai nghiệm của phương trình: .  

Lời giải chi tiết:

+) Tìm hai số khi biết tổng và tích của chúng

Nếu hai số có tổng bằng và tích bằng thì hai số đó là hai nghiệm của phương trình:

a) Đặt ta có 

Ta có:

Khi đó là hai nghiệm của phương trình

Ta có: 

Nên phương trình có hai nghiệm phân biệt:

Vậy 

Hoặc  

b) 

Đặt ta có  

Ta có: nên không có hai số thỏa mãn đề bài.

Câu hỏi 5

Câu hỏi 5

Nêu cách giải phương trình trùng phương

Phương pháp giải:

Đặt ẩn phụ (1) (điều kiện

Từ đó đưa về phương trình bậc hai ẩn t đã biết cách giải.

Lời giải chi tiết:

Xét phương trình 

Đặt ẩn phụ (1) (điều kiện

Khi đó phương trình đã cho tương đương với một phương trình bậc 2 ẩn t là:

(2)

- Giải phương trình (2) để tìm t, so sánh với điều kiện.

- Thay giá trị t thỏa mãn vào (1) để tìm x.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi