
25/10/2023
25/10/2023
$\displaystyle \begin{array}{{>{\displaystyle}l}}
\cos^{4} x+\cos^{4}\left( x+\frac{\pi }{4}\right) =\frac{1}{4}\\
\Leftrightarrow \cos^{4} x+\left(\frac{\sqrt{2}}{2}\cos x-\frac{\sqrt{2}}{2}\sin x\right)^{4} =\frac{1}{4}\\
\Leftrightarrow \cos^{4} x+\frac{1}{4}(\cos x-\sin x)^{4} =\frac{1}{4}\\
\Leftrightarrow 4\cos^{4} x+\left(\cos^{2} x-2\cos x\sin x+\sin^{2} x\right)^{2} =1\\
\Leftrightarrow 4\cos^{4} x+( 1-2\cos x\sin x)^{2} =1\\
\Leftrightarrow 4\cos^{4} x+1-4\cos x\sin x+4\cos^{2} x\sin^{2} x=1\\
\Leftrightarrow \cos^{4} x-\cos x\sin x+\cos^{2} x\sin^{2} x=0\\
\Leftrightarrow \cos x\left(\cos^{3} x-\sin x+\cos x\sin^{2} x\right) =0\\
\Leftrightarrow \cos x\left[\cos x\left(\cos^{2} x+\sin^{2} x\right) -\sin x\right] =0\\
\Leftrightarrow \cos x.(\cos x-\sin x) =0\\
\Leftrightarrow \left[ \begin{array}{l l}
\cos x=0 & \\
\cos x-\sin x=0 &
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l l}
\cos x=0 & \\
\cos\left( x+\frac{\pi }{4}\right) =0 &
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l l}
x=\frac{\pi }{2} +k\pi & \\
x+\frac{\pi }{4} =\frac{\pi }{2} +k\pi &
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l l}
x=\frac{\pi }{2} +k\pi & \\
x=\frac{\pi }{4} +k\pi &
\end{array} \right.( k\in \mathbb{Z})\\
\end{array}$
25/10/2023
Bạn tham khảo:
$cos^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}$
<=> $\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1+cos\left(2x+\frac{\pi}{2}\right)}{2}\right)^2=\frac{1}{4}$
<=> $\left(1+cos2x\right)^2+\left\lbrack1+cos\left(2x+\frac{\pi}{2}\right)\right\rbrack^2=1$
<=> $\left(1+cos2x\right)^2+\left(1+\sin2x\right)^2=1$
<=> $1+2\cos2x+cos^22x+1+2\sin2x+\sin^22x=1$
<=> $2+2\left(cos2x+\sin2x\right)+\left(\sin^22x+cos^22x\right)=1$
<=> $2+2\left(cos2x+\sin2x\right)+1=1$
<=> $cos2x+\sin2x=-1$
<=> $\sqrt{2}\sin\left(2x+\frac{\pi}{4}\right)=-1$
<=> $\sin\left(2x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$
<=> $\sin\left(2x+\frac{\pi}{4}\right)=\sin-\frac{\pi}{4}$
<=> $\begin{cases}2x+\frac{\pi}{4}=-\frac{\pi}{4}+k.2\pi \\ 2x+\frac{\pi}{4}=\pi+\frac{\pi}{4}+k.2\pi\end{cases}$ $\left(K\in\right.\mathbb{Z})$
<=> $\begin{cases}x=-\frac{\pi}{4}+k.\pi \\ x=\frac{\pi}{2}+k.\pi\end{cases}$ $\left(K\in\right.\mathbb{Z})$
Chúc bạn học tốt
Hùng Nguyễn
25/10/2023
vote5*
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
11/12/2025
Top thành viên trả lời