03/12/2023
03/12/2023
Xét
Áp dụng ta có:
Với
⟹
Với
⟹
Vậy
03/12/2023
LowG 1. Tổng các giá trị tuyệt đối của các số liên tiếp từ a đến d là không đổi. Điều này có nghĩa là |a-b|+|b-c|+|c-d|+|d-a| = |b-c|+|c-d|+|d-a|+|a-b| = |c-d|+|d-a|+|a-b|+|b-c| = |d-a|+|a-b|+|b-c|+|c-d|.
2. Tổng các giá trị tuyệt đối của các số liên tiếp từ a đến d cũng chính là tổng các giá trị tuyệt đối của các số liên tiếp từ b đến c. Điều này có nghĩa là |a-b|+|b-c|+|c-d|+|d-a| = |b-c|+|c-d|+|d-a|+|a-b| = |b-c|+|c-d|+|d-a|+|a-b|.
Với những tính chất này, chúng ta có thể rút gọn biểu thức ban đầu thành 2(a-b+c-d) = a^2022+2023.
Tiếp theo, chúng ta sẽ tìm cách giải phương trình này. Ta có thể chia cả hai vế của phương trình cho 2 để thu được (a-b+c-d) = (a^2022+2023)/2.
Bây giờ, chúng ta sẽ xem xét phần dư của a^12 khi chia cho 16. Để làm điều này, chúng ta sẽ sử dụng định lý Euler và định lý Fermat nhỏ.
Định lý Euler: Nếu a và n là hai số nguyên tố cùng nhau, thì a^phi(n) ≡ 1 (mod n), trong đó phi(n) là hàm phi Euler của n.
Định lý Fermat nhỏ: Nếu p là một số nguyên tố và a là một số nguyên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).
Trong trường hợp này, chúng ta muốn tìm phần dư của a^12 khi chia cho 16. Để làm điều này, chúng ta sẽ tìm phần dư của a^12 khi chia cho 4 và phần dư của a^12 khi chia cho 2.
Đầu tiên, chúng ta xem xét phần dư của a^12 khi chia cho 4. Vì 16 = 4 * 4, nên chúng ta có thể áp dụng định lý Euler để thu được a^phi(4) ≡ a^2 ≡ 1 (mod 4). Do đó, a^12 ≡ (a^2)^6 ≡ 1^6 ≡ 1 (mod 4).
Tiếp theo, chúng ta xem xét phần dư của a^12 khi chia cho 2. Nếu a là số chẵn, thì a^12 cũng là số chẵn và phần dư khi chia cho 2 sẽ là 0. Nếu a là số lẻ, thì a^12 cũng là số lẻ và phần dư khi chia cho 2 sẽ là 1.
Vậy, chúng ta đã tìm được phần dư của a^12 khi chia cho 16. Nếu a là số chẵn, phần dư sẽ là 0. Nếu a là số lẻ, phần dư sẽ là 1.
Trong bài toán này, chúng ta đã tìm được phương trình (a-b+c-d) = (a^2022+2023)/2 và phần dư của a^12 khi chia cho 16 là 0.
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
5 giờ trước
Top thành viên trả lời