Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Để giải bài toán này, ta cần tìm số tự nhiên n thỏa mãn các điều kiện sau:
Ta sẽ giải hệ phương trình trên bằng phương pháp đồng dư Trung Hoa (Chinese Remainder Theorem - CRT) để tìm được n.
Đầu tiên, ta tính và các số nguyên dương , , .
Tiếp theo, ta cần tìm các số nguyên dương sao cho:
Từ đó, ta có:
Sau đó, ta tính n như sau:
Kết quả tính toán là:
Vậy khi chia n cho 2737 thì dư sẽ là .
gọi số dã cho là A, theo đề bài ta có:
A = 7.a + 3 = 17.b + 12 = 23.c + 7
mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
như vậy A+39 đồng thời chia hết cho 7,17 và 23.
nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) 7.17.23 hay (A+39) 2737
Suy ra A+39 = 2737.k suy ra A = 2737.k - 39 = 2737.(k-1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
1
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.