21/12/2024
21/12/2024
21/12/2024
a.
Ta có AD là đường kính của (O)
⟹ $\displaystyle \widehat{ACD}$ là góc nội tiếp chắn nửa đường tròn
⟹ $\displaystyle \widehat{ACD} =90^{0}$
b.
Tam giác ACD vuông tại C ($\displaystyle \widehat{ACD} =90^{0}$)
⟹ $\displaystyle \frac{AC}{AD} =\frac{AC}{2R} =sin\widehat{ADC}$
Tam giác AHB vuông tại H
⟹ $\displaystyle \frac{AH}{AB} =sin\widehat{ABC}$
Mà $\displaystyle \widehat{ADC} =\widehat{ABC}$ (2 góc nội tiếp cùng chắn cung AC)
⟹ $\displaystyle \frac{AC}{2R} =\frac{AH}{AB}$
⟹ $\displaystyle AB.AC=2R.AH$ (dpcm)
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
CÂU HỎI LIÊN QUAN
14/06/2025
Top thành viên trả lời