vẽ đồ thị hàm số y=x²-2x+2

Trả lời câu hỏi của Huy Nguyễn

Làm sao để có câu trả lời hay nhất?

  • Luôn có GIẢI THÍCH các bước giải
  • Không copy câu trả lời của Timi
  • Không sao chép trên mạng
  • Không spam câu trả lời để nhận điểm
  • Spam sẽ bị khóa tài khoản
CÂU TRẢ LỜI
avatar
Timi

5 giờ trước

Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Để vẽ đồ thị hàm số \( y = x^2 - 2x + 2 \), ta thực hiện các bước sau: 1. Xác định dạng của hàm số: Hàm số \( y = x^2 - 2x + 2 \) là một hàm bậc hai, có dạng \( y = ax^2 + bx + c \) với \( a = 1 \), \( b = -2 \), và \( c = 2 \). 2. Tìm đỉnh của parabol: Đỉnh của parabol \( y = ax^2 + bx + c \) có tọa độ \( \left( -\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \). - Tính hoành độ đỉnh: \[ x = -\frac{b}{2a} = -\frac{-2}{2 \cdot 1} = 1 \] - Tính tung độ đỉnh bằng cách thay \( x = 1 \) vào hàm số: \[ y = 1^2 - 2 \cdot 1 + 2 = 1 - 2 + 2 = 1 \] Vậy đỉnh của parabol là \( (1, 1) \). 3. Xác định hướng mở của parabol: Vì \( a = 1 > 0 \), parabol mở ra phía trên. 4. Tìm các điểm khác trên đồ thị: Để vẽ đồ thị chính xác hơn, ta tính thêm một vài điểm khác trên đồ thị. - Khi \( x = 0 \): \[ y = 0^2 - 2 \cdot 0 + 2 = 2 \] Điểm: \( (0, 2) \) - Khi \( x = 2 \): \[ y = 2^2 - 2 \cdot 2 + 2 = 4 - 4 + 2 = 2 \] Điểm: \( (2, 2) \) - Khi \( x = -1 \): \[ y = (-1)^2 - 2 \cdot (-1) + 2 = 1 + 2 + 2 = 5 \] Điểm: \( (-1, 5) \) - Khi \( x = 3 \): \[ y = 3^2 - 2 \cdot 3 + 2 = 9 - 6 + 2 = 5 \] Điểm: \( (3, 5) \) 5. Vẽ đồ thị: - Vẽ trục tọa độ Oxy. - Đánh dấu đỉnh \( (1, 1) \). - Đánh dấu các điểm \( (0, 2) \), \( (2, 2) \), \( (-1, 5) \), và \( (3, 5) \). - Vẽ parabol đi qua các điểm này, mở ra phía trên. Vậy đồ thị của hàm số \( y = x^2 - 2x + 2 \) đã được vẽ hoàn chỉnh.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận
avatar
level icon
ngo xuan thinhhg2

5 giờ trước

Xác định đỉnh trục

Hãy giúp mọi người biết câu trả lời này thế nào?
0/5 (0 đánh giá)
thumb up 0
thumb down
0 bình luận
Bình luận

Nếu bạn muốn hỏi bài tập

Các câu hỏi của bạn luôn được giải đáp dưới 10 phút

Ảnh ads

CÂU HỎI LIÊN QUAN

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved