Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
A = n(n + 2)(25n² - 1)
= n(n + 2)[(5n)² - 1]
= n(n + 2)(5n - 1)(5n + 1)
Ta thấy n và n + 2 là hai số tự nhiên liên tiếp nên tồn tại một số chẵn. Suy ra A chia hết cho 2.
Mặt khác, trong ba số tự nhiên liên tiếp 5n - 1, 5n, 5n + 1 luôn tồn tại một số chia hết cho 3. Mà 5 và 3 nguyên tố cùng nhau nên tồn tại một số hạng trong ba số 5n - 1, 5n, 5n + 1 chia hết cho 3. Suy ra A chia hết cho 3.
Lại có, n và n + 2 có thể đều chẵn hoặc đều lẻ.
- Nếu n và n + 2 đều chẵn thì A chia hết cho 4.
- Nếu n và n + 2 đều lẻ thì 5n và 5n + 2 cũng đều lẻ. Suy ra trong hai số 5n - 1 và 5n + 1 có một số chia hết cho 4. Vậy A chia hết cho 4.
Từ đó suy ra A chia hết cho 24 với mọi số nguyên n.
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
0
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.