Trợ lý học tập AI - Câu trả lời này chỉ mang tính tham khảo
Câu 3:
Để xét tính đúng sai của các mệnh đề, ta sẽ lần lượt kiểm tra từng mệnh đề một cách chi tiết.
Mệnh đề a): Tọa độ của vectơ $\overrightarrow{a} = (-1; 3; 4)$.
- Vectơ $\overrightarrow{a} = -\overrightarrow{\iota} + 3\overrightarrow{j} + 4\overrightarrow{k}$ có tọa độ là $(-1, 3, 4)$.
- Do đó, mệnh đề a) là Đúng.
Mệnh đề b): $\overrightarrow{a} \cdot \overrightarrow{b} = 14$.
- Tích vô hướng của hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ được tính như sau:
\[
\overrightarrow{a} \cdot \overrightarrow{b} = (-1) \cdot 2 + 3 \cdot 4 + 4 \cdot 1 = -2 + 12 + 4 = 14.
\]
- Do đó, mệnh đề b) là Đúng.
Mệnh đề c): Hai vectơ $\overrightarrow{a}, \overrightarrow{b}$ vuông góc với nhau.
- Hai vectơ vuông góc khi và chỉ khi tích vô hướng của chúng bằng 0.
- Từ mệnh đề b), ta có $\overrightarrow{a} \cdot \overrightarrow{b} = 14 \neq 0$.
- Do đó, hai vectơ không vuông góc với nhau, mệnh đề c) là Sai.
Mệnh đề d): $\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{1}{2}$.
- Công thức tính $\cos$ của góc giữa hai vectơ là:
\[
\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \cdot \|\overrightarrow{b}\|}
\]
- Tính độ dài của vectơ $\overrightarrow{a}$:
\[
\|\overrightarrow{a}\| = \sqrt{(-1)^2 + 3^2 + 4^2} = \sqrt{1 + 9 + 16} = \sqrt{26}
\]
- Tính độ dài của vectơ $\overrightarrow{b}$:
\[
\|\overrightarrow{b}\| = \sqrt{2^2 + 4^2 + 1^2} = \sqrt{4 + 16 + 1} = \sqrt{21}
\]
- Tính $\cos(\overrightarrow{a}, \overrightarrow{b})$:
\[
\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{14}{\sqrt{26} \cdot \sqrt{21}}
\]
- Để kiểm tra $\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{1}{2}$, ta cần so sánh:
\[
\frac{14}{\sqrt{26 \cdot 21}} \neq \frac{1}{2}
\]
- Do đó, mệnh đề d) là Sai.
Tóm lại:
- Mệnh đề a) là Đúng.
- Mệnh đề b) là Đúng.
- Mệnh đề c) là Sai.
- Mệnh đề d) là Sai.
Câu 4:
a) Đúng.
Vận tốc của hạt là $v(t)=y'(t)=6t^2-24(m/s)$
b) Sai.
Trong 2 giây đầu tiên, vận tốc của hạt âm nên hạt chuyển động xuống dưới.
c) Sai.
Ta có gia tốc của hạt là $a(t)=v'(t)=12t$.
Do đó, trong khoảng thời gian $0\leq t< 2$ thì $a(t)< 0$ còn trong khoảng thời gian $t>2$ thì $a(t)>0$.
Như vậy, trong khoảng thời gian $0\leq t< 2$ thì $a(t).v(t)>0$ nên hạt chuyển động nhanh dần đều, còn trong khoảng thời gian $t>2$ thì $a(t).v(t)< 0$ nên hạt chuyển động chậm dần đều.
d) Đúng.
Quãng đường hạt đi được trong 4 giây đầu tiên là:
$\int_{0}^{4}|v(t)|dt=\int_{0}^{2}|6t^2-24|dt+\int_{2}^{4}|6t^2-24|dt$
$=\int_{0}^{2}(24-6t^2)dt+\int_{2}^{4}(6t^2-24)dt$
$=(24t-2t^3)\mid _{0}^{2}+(2t^3-24t)\mid _{2}^{4}=32(m)$
Hãy giúp mọi người biết câu trả lời này thế nào?
0/5(0 đánh giá)
0
0 bình luận
Bình luận
Nếu bạn muốn hỏi bài tập
Các câu hỏi của bạn luôn được giải đáp dưới 10 phút
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019
Email: info@fqa.vn
Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.