2. Bài tập cuối tuần 21 - Đề 2

Đề bài

Bài 1. Rút gọn các phân số sau:   \(\dfrac{{14}}{{28}}\) ; \(\dfrac{{12}}{8}\) ;   \(\dfrac{{25}}{{35}}\) ; \(\dfrac{9}{{72}}\) ;  \(\dfrac{{25}}{{100}}\).

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

Câu 2. Viết số thích hợp vào ô trống:

Bài 3. Trong các phân số:    \(\dfrac{1}{3}\)  ;   \(\dfrac{4}{7}\)  ;   \(\dfrac{8}{{32}}\) ;   \(\dfrac{{72}}{{73}}\) ;   \(\dfrac{{18}}{{45}}\).

a) Phân số nào là phân số tối giản? Vì sao?

b) Phân số nào rút gọn được? Hãy rút gọn phân số đó. 

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

Bài 4. Quy đồng mẫu số các phân số sau:

a) \(\dfrac{3}{5}\) và \(\dfrac{4}{9}\)                             b) \(\dfrac{3}{8}\) và \(\dfrac{{37}}{{40}}\)                      c) \(\dfrac{5}{6}\) và \(\dfrac{7}{8}\)

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

Lời giải chi tiết

 

Bài 1. 

Phương pháp:

Khi rút gọn phân số ta có thể làm như sau:

- Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1.

- Chia tử số và mẫu số cho số đó.

Cứ làm như thế cho đến khi nhận được phân số tối giản.

Cách giải:

\(\dfrac{{14}}{{28}} = \dfrac{{14:14}}{{28:14}} = \dfrac{1}{2}\,\,;\)                \(\dfrac{{12}}{8} = \dfrac{{12:4}}{{8:4}} = \dfrac{3}{2}\,\,;\)

\(\dfrac{{25}}{{35}} = \dfrac{{25:5}}{{35:5}} = \dfrac{5}{7}\,\,;\)                    \(\dfrac{9}{{72}} = \dfrac{{9:9}}{{72:9}} = \dfrac{1}{8}\,\,;\)                  \(\dfrac{{25}}{{100}} = \dfrac{{25:25}}{{100:25}} = \dfrac{1}{4}.\)

Bài 2. 

Phương pháp:

Áp dụng tính chất cơ bản của phân số: Nếu cả tử số và mẫu số của một phân số cùng chia hết cho một số tự nhiên khác 0 thì sau khi chia ta được một phân số bằng phân số đã cho.

Cách giải:

a) Ta có: 

\(\dfrac{{48}}{{84}} = \dfrac{{48:2}}{{84:2}} = \dfrac{{24}}{{42}};\)           \(\dfrac{{24}}{{42}} = \dfrac{{24:2}}{{42:2}} = \dfrac{{12}}{{21}}\,\,;\)                  \(\dfrac{{12}}{{21}} = \dfrac{{12:3}}{{21:3}} = \dfrac{4}{7}.\)

Vậy ta điền kết quả như sau: \(\dfrac{{48}}{{84}} = \dfrac{{24}}{{42}} = \dfrac{{12}}{{21}} = \dfrac{4}{7}.\)

b) Ta có:     \(\dfrac{{42}}{{72}} = \dfrac{{42:3}}{{72:3}} = \dfrac{{14}}{{24}}\,\,;\)                    \(\dfrac{{14}}{{24}} = \dfrac{{14:2}}{{24:2}} = \dfrac{7}{{12}}.\)

Vậy ta điền kết quả như sau: \(\dfrac{{42}}{{72}} = \dfrac{{14}}{{24}} = \dfrac{7}{{12}}.\)

c) Ta có:       \(\dfrac{{25}}{{75}} = \dfrac{{25:5}}{{75:5}} = \dfrac{5}{{15}}\,\,;\)             \(\dfrac{5}{{15}} = \dfrac{{5:5}}{{15:5}} = \dfrac{1}{3}\,.\)

Vậy ta điền kết quả như sau: \(\dfrac{{25}}{{75}} = \dfrac{5}{{15}} = \dfrac{1}{3}\,.\)

d) Ta có:

\(\dfrac{{81}}{{54}} = \dfrac{{81:3}}{{54:3}} = \dfrac{{27}}{{18}}\,\,;\)                  \(\dfrac{{27}}{{18}} = \dfrac{{27:3}}{{18:3}} = \dfrac{9}{6}\,\,;\)                             \(\dfrac{9}{6} = \dfrac{{9:3}}{{6:3}} = \dfrac{3}{2}.\)

Vậy ta điền kết quả như sau: \(\dfrac{{81}}{{54}} = \dfrac{{27}}{{18}} = \dfrac{9}{6} = \dfrac{3}{2}.\)

Bài 3. 

Phương pháp:

- Phân số tối giản là phân số có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn 1, hay phân số tối giản là phân số không thể rút gọn được nữa.

-  Khi rút gọn phân số ta có thể làm như sau:

• Xét xem tử số và mẫu số cùng chia hết cho số tự nhiên nào lớn hơn 1.

• Chia tử số và mẫu số cho số đó.

Cứ làm như thế cho đến khi nhận được phân số tối giản.

Cách giải:

a) Trong các phân số đã cho, các phân số \(\dfrac{1}{3}\);  \(\dfrac{4}{7}\); \(\dfrac{{72}}{{73}}\) có tử số và mẫu số không cùng chia hết cho một số tự nhiên nào lớn hơn 1.

Vậy các phân số tối giản là \(\dfrac{1}{3}\);  \(\dfrac{4}{7}\); \(\dfrac{{72}}{{73}}\).

b) Có hai phân số rút gọn được là \(\dfrac{8}{{32}}\) và \(\dfrac{{18}}{{45}}.\)

\(\dfrac{8}{{32}} = \dfrac{{8:8}}{{32:8}} = \dfrac{1}{4}\,\,;\)                           \(\dfrac{{18}}{{45}} = \dfrac{{18:9}}{{45:9}} = \dfrac{2}{5}.\)

Bài 4. 

Phương pháp:

a) Quy đồng mẫu số hai phân số đã cho với mẫu số chung là 28.

b) Quy đồng mẫu số hai phân số đã cho với mẫu số chung là 35.

c) Quy đồng mẫu số hai phân số đã cho với mẫu số chung là 63.

Cách giải: 

a) Chọn mẫu số chung là 45.

Ta quy đồng mẫu số các phân số \(\dfrac{3}{5}\) và \(\dfrac{4}{9}\)  như sau:

\(\dfrac{3}{5} = \dfrac{{3 \times 9}}{{5 \times 9}} = \dfrac{{27}}{{45}}\) ;                          \(\dfrac{4}{9} = \dfrac{{4 \times 5}}{{9 \times 5}} = \dfrac{{20}}{{45}}.\)   

Vậy quy đồng mẫu số các phân số \(\dfrac{3}{5}\) và \(\dfrac{4}{9}\) ta được  \(\dfrac{{27}}{{45}}\) và \(\dfrac{{20}}{{45}}\).

b) Chọn mẫu số chung là 40.

Ta quy đồng mẫu số các phân số \(\dfrac{3}{8}\) và \(\dfrac{{37}}{{40}}\)như sau:

\(\dfrac{3}{8} = \dfrac{{3 \times 5}}{{8 \times 5}} = \dfrac{{15}}{{40}}\,\,;\)                                Giữ nguyên phân số \(\dfrac{{17}}{{35}}\).

Vậy quy đồng mẫu số các phân số \(\dfrac{3}{8}\) và \(\dfrac{{37}}{{40}}\)ta được  \(\dfrac{{15}}{{40}}\) và \(\dfrac{{37}}{{40}}\).

 c) Chọn mẫu số chung là 24.

Ta quy đồng mẫu số các phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{8}\) như sau:

\(\dfrac{5}{6} = \dfrac{{5 \times 4}}{{6 \times 4}} = \dfrac{{20}}{{24}}\,\, ;\)                           \(\dfrac{7}{8} = \dfrac{{7 \times 3}}{{8 \times 3}} = \dfrac{{21}}{{24}}.\)

Vậy quy đồng mẫu số các phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{8}\) ta được \(\dfrac{{20}}{{24}}\) và \(\dfrac{{21}}{{24}}\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved