Bài 1 trang 15 SGK Hình học 11

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho điểm \(A(-1;3)\) và đường thẳng \(d\) có phương trình \(x-2y + 3 = 0\). Tìm ảnh của \(A\) và \(d\) qua phép đối xứng tâm \(O\).

Phương pháp giải - Xem chi tiết

Gọi \(A'\) là ảnh của \(A\) qua phép đối xứng tâm \(O\), khi đó \(O\) là trung điểm của \(AA'\) \( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A}\\{y_{A'}} = 2{y_O} - {y_A}\end{array} \right.\)

Tìm ảnh của đường thẳng \(d\) qua phép đối xứng tâm \(O.\)

Cách 1:

Bước 1: Lấy hai điểm \(B, C\) bất kì thuộc đường thẳng \(d.\)

Bước 2: Xác định ảnh \(B'; C'\) của \(B;C\) qua phép đối xứng tâm \(O.\)

Bước 3: Viết phương trình đường thẳng \(B'C'\); khi đó \(B'C'\) chính là ảnh của đường thẳng \(d\) qua phép đối xứng tâm \(O.\)

Cách 2:

Bước 1: Ảnh của \(d\) qua phép đối xứng tâm \(O\) là đường thẳng song song với \(d,\) suy ra dạng phương trình đường thẳng \(d'.\)

Bước 2: Lấy một điểm \(B\) bất kì thuộc \(d,\) tìm ảnh \(B'\) của điểm \(B\) qua phép đối xứng tâm \(O.\)

Bước 3: Thay tọa độ điểm \(B'\) vào phương trình đường thẳng \(d'\) và suy ra phương trình đường thẳng \(d'.\)

Lời giải chi tiết

Gọi \(A'\) là ảnh của \(A\) qua phép đối xứng tâm \(O\), khi đó \(O\) là trung điểm của \(AA'\)

\(  \Leftrightarrow \left\{ \begin{array}{l}
{x_O} = \frac{{{x_A} + {x_{A'}}}}{2}\\
{y_O} = \frac{{{y_A} + {y_{A'}}}}{2}
\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A}\\{y_{A'}} = 2{y_O} - {y_A}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
{x_{A'}} = 2.0 - \left( { - 1} \right) = 1\\
{y_{A'}} = 2.0 - 3 = - 3
\end{array} \right.\)

\( \Rightarrow A'\left( {1; - 3} \right)\)

Để tìm ảnh của đường thẳng \(d\) ta có thể dùng các cách sau:

Cách 1:

+) Lấy 2 điểm bất kì thuộc \(d.\)

(Bằng cách chọn giá trị cho \(x\) (hoặc \(y\)) rồi thay vào phương trình của \(d\), suy ra giá trị của \(y\) (hay \(x)\). )

Chọn \(y=0\) ta có: \(x-2.0+3=0 \Rightarrow x=-3 \Rightarrow B(-3;0) \in d\)

Chọn \(x=-1\) ta có: \(-1-2y+3=0 \Rightarrow y=1 \Rightarrow C (-1;1) \in d\).

Do đó, đường thẳng \(d\) đi qua \(B(-3;0)\) và \(C (-1;1)\).

+) Tìm ảnh qua phép đối xứng tâm \(O\): 

\(B' = {D_{O}}(B) = (3;0)\) và \(C' = {D_{O}}(C) = (1;-1)\).

Đường thẳng \(B'C'\) là ảnh của \(d\) qua phép đối xứng tâm \(O.\)

\(\overrightarrow {B'C'}  = \left( {2;1} \right) \Rightarrow \overrightarrow {{n_{B'C'}}}  = \left( {1; - 2} \right)\) là VTPT của \(B'C'.\)

+) Phương trình\(B'C'\) đi qua \(B'(3;0)\), có \(VTPT \, \overrightarrow {{n_{B'C'}}}  = \left( {1; - 2} \right)\)  là:

\(1(x-3)-2(y-0)=0\) hay \(x-2y-3=0.\)

Cách 2:

Đường thẳng \(d\) đi qua \(B(-3;0)\)

Do \(O\) không thuộc \(d\) nên gọi \(d'\) là ảnh của \(d\) qua phép đối xứng tâm \(O\) thì nó song song với \(d\).

Do đó \(d'\) có phương trình \(x- 2y +C =0\) \(\left( {C \ne 3} \right)\).

Gọi \(B'\) là ảnh của \(B\) qua phép đối xứng tâm \(O\) ta có: \(B' =( 3;0)\)

Vì \(B' \in (d') \Rightarrow 3+C=0 \Rightarrow C = -3\) (tm).

Vậy ảnh của \(d\) qua phép đối xứng tâm \(O\) là đường thẳng \(d'\) có phương trình \(x-2y-3=0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved