Bài 15 trang 30 Tài liệu dạy – học Toán 9 tập 1

Đề bài

Cho biểu thức :  \(P = \left( {\dfrac{{\sqrt x  + 2}}{{x - 5\sqrt x  + 6}} - \dfrac{{\sqrt x  + 3}}{{2 - \sqrt x }} - \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 3}}} \right):\left( {2 - \dfrac{{\sqrt x }}{{\sqrt x  + 1}}} \right)\)

a) Tìm giá trị của x để P có nghĩa rồi rút gọn P.

b) Tìm x để \(\dfrac{1}{P} \le  - \dfrac{5}{2}\).

Phương pháp giải - Xem chi tiết

a) Quy đồng mẫu các phân thức.

+) Biến đổi và rút gọn biểu thức.

b) Với giá trị của biểu thức vừa rút gọn được, giải bất phương trình \(\dfrac{1}{P} \le  - \dfrac{5}{2}\) tìm x.

+) Đối chiếu với điều kiện của x rồi kết luận.

Lời giải chi tiết

 

a) Điều kiện:

\(\left\{ \begin{array}{l}x \ge 0\\x - 5\sqrt x  + 6 \ne 0\\\sqrt x  - 3 \ne 0\\2 - \sqrt x  \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 9\\x \ne 4\end{array} \right..\)

\(\begin{array}{l}P = \left( {\dfrac{{\sqrt x  + 2}}{{x - 5\sqrt x  + 6}} - \dfrac{{\sqrt x  + 3}}{{2 - \sqrt x }} - \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 3}}} \right):\left( {2 - \dfrac{{\sqrt x }}{{\sqrt x  + 1}}} \right)\\\;\;\; = \left[ {\dfrac{{\sqrt x  + 2}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  - 2} \right)}} + \dfrac{{\sqrt x  + 3}}{{\sqrt x  - 2}} - \dfrac{{\sqrt x  + 2}}{{\sqrt x  - 3}}} \right]:\dfrac{{2\sqrt x  + 2 - \sqrt x }}{{\sqrt x  + 1}}\\\;\;\; = \dfrac{{\sqrt x  + 2 + \left( {\sqrt x  + 3} \right)\left( {\sqrt x  - 3} \right) - \left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  - 2} \right)}}:\dfrac{{\sqrt x  + 2}}{{\sqrt x  + 1}}\\\;\;\; = \dfrac{{\sqrt x  + 2 + x - 9 - x + 4}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  - 2} \right)}}.\dfrac{{\sqrt x  + 1}}{{\sqrt x  + 2}}\\\;\;\; = \dfrac{{\sqrt x  - 3}}{{\left( {\sqrt x  - 3} \right)\left( {\sqrt x  - 2} \right)}}.\dfrac{{\sqrt x  + 1}}{{\sqrt x  + 2}}\\\;\;\; = \dfrac{{\sqrt x  + 1}}{{x - 4}}.\end{array}\)

b) Điều kiện: \(x \ge 0,\;\;x \ne 4,\;\;x \ne 9.\)

\(\begin{array}{l}\;\;\;\;\dfrac{1}{P} \le  - \dfrac{5}{2} \Leftrightarrow \dfrac{{x - 4}}{{\sqrt x  + 1}} \le  - \dfrac{5}{2}\\ \Leftrightarrow \dfrac{{x - 4}}{{\sqrt x  + 1}} + \dfrac{5}{2} \le 0\\ \Leftrightarrow \dfrac{{2x - 8 + 5\sqrt x  + 5}}{{2\left( {\sqrt x  + 1} \right)}} \le 0\\ \Leftrightarrow 2x + 5\sqrt x  - 3 \le 0\;\;\;\;\left( {do\;\;2\left( {\sqrt x  + 1} \right) > 0} \right)\\ \Leftrightarrow \left( {2\sqrt x  - 1} \right)\left( {\sqrt x  + 3} \right) \le 0\\ \Leftrightarrow 2\sqrt x  - 1 \le 0\;\;\;\left( {\sqrt x  + 3 > 0} \right)\\ \Leftrightarrow 2\sqrt x  \le 1\\ \Leftrightarrow \sqrt x  \le \dfrac{1}{2}\\ \Leftrightarrow x \le \dfrac{1}{4}.\end{array}\)

 

Kết hợp với điều kiện \(x \ge 0,\;\;x \ne 4,\;\;x \ne 9\) ta được \(0 \le x \le \dfrac{1}{4}.\)

Vậy \(0 \le x \le \dfrac{1}{4}.\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved