Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Tìm x ở hình 5, hình 6:
Phương pháp giải - Xem chi tiết
Áp dụng định lý: Tổng các góc của một tứ giác bằng \(360^0.\)
Lời giải chi tiết
Áp dụng: Tổng bốn góc trong 1 tứ giác bằng 3600
Ta có:
Ở hình 5
a) Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(ABCD\) ta được:
\(\eqalign{
& \,\,\widehat A + \widehat B + \widehat C + \widehat D = {360^0} \cr
& \Rightarrow \widehat D = {360^0} - \left( {\,\,\widehat A + \widehat B + \widehat C} \right) \cr
& \Rightarrow x = {360^0} - \left( {{{110}^0} + {{120}^0} + {{80}^0}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = {360^0} - {310^0} = {50^0} \cr} \)
b) Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(EFGH\) ta được:
\(\eqalign{
& \widehat E + \widehat F + \widehat G + \widehat H = {360^0} \cr
& \Rightarrow \widehat G = {360^0} - \left( {\widehat E + \widehat F + \widehat H} \right) \cr
& \Rightarrow x = {360^0} - \left( {{{90}^0} + {{90}^0} + {{90}^0}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = {360^0} - {270^0} = {90^0} \cr} \)
c) Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(ABDE\) ta được:
\(\eqalign{
& \widehat A + \widehat B + \widehat D + \widehat E = {360^0} \cr
& \Rightarrow \widehat D = {360^0} - \left( {\widehat A + \widehat B + \widehat E} \right) \cr
& \Rightarrow x = {360^0} - \left( {{{65}^0} + {{90}^0} + {{90}^0}} \right) \cr
& \;\,\,\,\,\,\,\,\,\,\, = {360^0} - {245^0} = {115^0} \cr} \)
d) Ta có: \(\widehat {IKM}+60^0=180^0\) (hai góc kề bù) \(\Rightarrow \widehat {IKM} = {180^0} - {60^0} = {120^0} \)
\(\widehat {KMN}+105^0=180^0\) (hai góc kề bù) \(\Rightarrow \widehat {KMN} = {180^0} - {105^0} = {75^0}\)
Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(MNIK\) ta được:
\(\eqalign{
& \widehat {KMN} + \widehat {MNI} + \widehat {NIK} + \widehat {IKM} = {360^0} \cr
& \Rightarrow \widehat {MNI} = {360^0} - \left( {\widehat {KMN} + \widehat {IKM} + \widehat {NIK}} \right) \cr
& \Rightarrow x = {360^0} - \left( {{{75}^0} + {{120}^0} + {{90}^0}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\, = {360^0} - {285^0} = {75^0} \cr} \)
Ở hình 6
a) Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(PQRS\) ta được:
\(\eqalign{
& \widehat P + \widehat Q + \widehat R + \widehat S = {360^0} \cr
& \Rightarrow \widehat P + \widehat Q = {360^0} - \left( {\widehat S + \widehat R} \right) \cr
& \Rightarrow x + x = {360^0} - \left( {{{65}^0} + {{95}^0}} \right) \cr
& \Rightarrow 2x = {360^0} - {160^0} \cr
& \Rightarrow x = {{{{360}^0} - {{160}^0}} \over 2} \cr
& \Rightarrow x = {{{{200}^0}} \over 2} \cr
& \Rightarrow x = {100^0} \cr} \)
b) Áp dụng định lí tổng các góc của một tứ giác vào tứ giác \(MNPQ\) ta được:
\(\eqalign{
& \widehat M + \widehat N + \widehat P + \widehat Q = {360^0} \cr
& 3x + 4x + x + 2x = {360^0} \cr
& 10x = {360^0} \cr
& x = {{{{360}^0}} \over {10}} = {36^0} \cr} \)
Bài 9: Góp phần xây dựng nếp sống văn hoá ở cộng đồng dân cư
CHƯƠNG 11. SINH SẢN
Unit 4. Disasters
Bài 7. Xác định mục tiêu cá nhân
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Ngữ văn lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8