Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.
LG a
Hãy mô tả không gian mẫu.
Phương pháp giải:
Khi gieo: mỗi con súc sắc có thể xuất hiện một trong 6 mặt tương ứng 1,2,3,4,5,6 chấm.
Mỗi phần tử của kgm là một cặp số (x,y) \((x,y \in \{ 1;2;3;4;5;6\} )\)
Lời giải chi tiết:
Phép thử \(T\) được xét là "Gieo một con súc sắc cân đối và đồng chất hai lần".
\(Ω = \left\{{(i, j) \mid i, j = 1, 2, 3, 4, 5, 6}\right\}\).
Số phần tử của không gian mẫu là \(n(Ω) = 36\).
Cách liệt kê chi tiết:
Không gian mẫu:
\(\begin{array}{l}
\Omega = \left\{ {\left( {1;1} \right)} \right.,\left( {1;2} \right),\left( {1;3} \right),\left( {1;4} \right),\left( {1;5} \right),\left( {1;6} \right),\left( {2;1} \right),\left( {2;2} \right),\left( {2;3} \right),\left( {2;4} \right),\left( {2;5} \right),\left( {2;6} \right),\left( {3;1} \right),\left( {3;2} \right),\left( {3;3} \right),\left( {3;4} \right),\left( {3;5} \right),\left( {3;6} \right),\left( {4;1} \right),\\
\left( {4;2} \right),\left( {4;3} \right),\left( {4;4} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;1} \right),\left( {5;2} \right),\left( {5;3} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;1} \right),\left( {6;2} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left. {\left( {6;6} \right)} \right\}
\end{array}\)
LG b
Xác định các biến cố sau:
A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn \(10\)";
B: "Mặt \(5\) chấm xuất hiện ít nhất một lần".
Phương pháp giải:
Liệt kê và đếm số phần tử của biến cố A: \(n(A), n(B)\).
Lời giải chi tiết:
\(A\) \(= {(6, 4); (4, 6); (5, 5); (6, 5); (5, 6); (6, 6)}\) \( \Rightarrow n(A) = 6\)
\(B\) = \({(1, 5); (2, 5); (3, 5); (4, 5); (5, 5); (6, 5); (5, 1); (5, 2); (5, 3); (5, 4); (5, 6)}\) \( \Rightarrow n(B) = 11\).
LG c
Tính \(P(A), P(B)\).
Phương pháp giải:
+) Tính xác suất của biến cố A: \(P\left( A \right) = \dfrac{{n(A)}}{{n(Ω) }}\).
Lời giải chi tiết:
\(P(A)= \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)= \(\dfrac{6}{36}\) = \(\dfrac{1}{6}\);
\(P(B)\) \( = \dfrac{{n\left( B \right)}}{{n\left( \Omega \right)}}\) = \(\dfrac{11}{36}\).
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
Chương IV. Dòng điện không đổi
Chương 3. Quá trình giành độc lập của các quốc gia ở Đông Nam Á
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11