CHƯƠNG I. ÔN TẬP VÀ BỔ TÚC VỀ SỐ TỰ NHIÊN
CHƯƠNG I. ÔN TẬP VÀ BỔ TÚC VỀ SỐ TỰ NHIÊN

Bài 10* trang 72 Tài liệu dạy – học toán 6 tập 1

Đề bài

a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?

b) Chứng tỏ rằng tích hai số tự nhiên liên tiếp thì chia hết cho 2.

c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.

d) Chứng tỏ rằng tổng \(\overline {ab}  + \overline {ba} \) chia hết cho 11.

 

 

Lời giải chi tiết

a) Gọi ba số tự nhiên liên tiếp là: \(n; n + 1; n + 2 (n \in N\))

Ta có: n + n + 1 + n + 2 = 3n + 3

3n ⁝ 3, 3 ⁝ 3 \(\Rightarrow\) (3n + 3) ⁝ 3

Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3

b) Gọi hai số tự nhiên liên tiếp là n; n + 1 \((n \in N\))

Nếu n = 2k (\(k \in N\)) thì n ⁝ 2 do đó \(n(n + 1) ⁝ 2\)

Nếu n = 2k + 1 (\(k \in N\)) thì \(n + 1 = (2k + 2) ⁝ 2\) do đó n(n + 1) ⁝ 2

Ta có n(n + 1) ⁝ 2. Vậy tích của hai số tự nhiên liên tiếp chia hết cho 2

c) Gọi số tự nhiên có ba chữ số giống nhau là \(\overline {aaa} (a \in N^*)\)

\(\overline {aaa}  = 111.a\) mà 111 ⁝ 37 nên (111.a) ⁝ 37. Do đó: \(\overline {aaa}  \vdots 37\)

d) \(\overline {ab}  + \overline {ba}  = 10a + b + 10b + a = (11a + 11b) \;\vdots\; 11\)

Vì (11a) ⁝ 11 và (11b) ⁝ 11 nên \((11a + 11b) ⁝ 11.\) Do đó: \((\overline {ab}  + \overline {ba} )\; \vdots\; 11\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved