Đề bài
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Chứng tỏ rằng tích hai số tự nhiên liên tiếp thì chia hết cho 2.
c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.
d) Chứng tỏ rằng tổng \(\overline {ab} + \overline {ba} \) chia hết cho 11.
Lời giải chi tiết
a) Gọi ba số tự nhiên liên tiếp là: \(n; n + 1; n + 2 (n \in N\))
Ta có: n + n + 1 + n + 2 = 3n + 3
3n ⁝ 3, 3 ⁝ 3 \(\Rightarrow\) (3n + 3) ⁝ 3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Gọi hai số tự nhiên liên tiếp là n; n + 1 \((n \in N\))
Nếu n = 2k (\(k \in N\)) thì n ⁝ 2 do đó \(n(n + 1) ⁝ 2\)
Nếu n = 2k + 1 (\(k \in N\)) thì \(n + 1 = (2k + 2) ⁝ 2\) do đó n(n + 1) ⁝ 2
Ta có n(n + 1) ⁝ 2. Vậy tích của hai số tự nhiên liên tiếp chia hết cho 2
c) Gọi số tự nhiên có ba chữ số giống nhau là \(\overline {aaa} (a \in N^*)\)
\(\overline {aaa} = 111.a\) mà 111 ⁝ 37 nên (111.a) ⁝ 37. Do đó: \(\overline {aaa} \vdots 37\)
d) \(\overline {ab} + \overline {ba} = 10a + b + 10b + a = (11a + 11b) \;\vdots\; 11\)
Vì (11a) ⁝ 11 và (11b) ⁝ 11 nên \((11a + 11b) ⁝ 11.\) Do đó: \((\overline {ab} + \overline {ba} )\; \vdots\; 11\)
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6