ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 11 trang 180 SGK Đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hai dãy số \((u_n)\), \((v_n)\) với 

\({u_n} = {n \over {{n^2} + 1}}\) và \({v_n} = {{n\cos {\pi  \over n}} \over {{n^2} + 1}}\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tính \(\lim u_n\)

Phương pháp giải:

Tính \(\lim {u_n}\): Chia cả tử và mẫu cho \(n^2\).

Lời giải chi tiết:

Ta có:

\(\lim {u_n} = \lim {n \over {{n^2} + 1}} = \lim {{{n^2}({1 \over n})} \over {{n^2}(1 + {1 \over {{n^2}}})}} \) \(= \lim {{{1 \over n}} \over {1 + {1 \over {{n^2}}}}} = {0 \over 1} = 0\)

LG b

Chứng minh rằng \(\lim v_n= 0\)

Phương pháp giải:

Sử dụng định nghĩa dãy số có giới hạn 0.

Lời giải chi tiết:

Theo câu a, do \(\lim {u_n} = 0\) nên với \(\forall \varepsilon  > 0,\exists {n_0} \in \mathbb{N}\) sao cho với mọi \(n \ge {n_0}\) 

Ta có \(\left| {{u_n}} \right| \le \varepsilon \) hay \(\left| {\dfrac{n}{{{n^2} + 1}}} \right| \le \varepsilon \).

Khi đó \(\left| {{v_n} - 0} \right| = \left| {\dfrac{{n\cos \dfrac{\pi }{n}}}{{{n^2} + 1}}} \right|\) \( = \left| {\dfrac{n}{{{n^2} + 1}}} \right|.\left| {\cos \dfrac{\pi }{n}} \right|\) \( \le \left| {\dfrac{n}{{{n^2} + 1}}} \right| \le \varepsilon \) hay \(\lim {v_n} = 0\) (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved