ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 3 trang 179 SGK Đại số và giải tích 11

Đề bài

Giải các phương trình

a) \(2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x\)

b) \(3\cos x + 4\sin x = 5\)

c) \(\sin x + \cos x = 1 + \sin x. \cos x\)

d) \(\sqrt {1 - \cos x}  = \sin x(x \in \left[ {\pi ,3\pi } \right])\)

e) \((\cos{x \over 4} - 3\sin x)\sin x + (1 + \sin{x \over 4} - 3\cos x)\cos x\)\( = 0\)

Phương pháp giải - Xem chi tiết

a) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

b) Chia cả hai vế cho \(\sqrt {{a^2} + {b^2}} \).

c) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

d) Bình phương hai vế, đưa phương trình về dạng phương trình bậc hai đối với một hàm số lượng giác.

e) Phá ngoặc và nhóm các hạng tử phù hợp.

Lời giải chi tiết

a)

\(\eqalign{
& 2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}({\cos ^2}x - {\sin ^2}x) = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}.cos2x = \cos 2x\cr& \Leftrightarrow \cos 2x(2\sin {x \over 2} - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr 
\sin {x \over 2} = {1 \over 2} = \sin {\pi \over 6} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 2} + k\pi \hfill \cr 
\left[ \matrix{
{x \over 2} = {\pi \over 6} + k2\pi \hfill \cr 
{x \over 2} = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + \frac{k\pi}{2} \hfill \cr 
x = {\pi \over 3} + k4\pi \hfill \cr 
x = {{5\pi } \over 3} + k4\pi \hfill \cr} \right.(k \in\mathbb Z) \cr} \)

 b) Ta có: 

\(\eqalign{
& 3cos{\rm{ }}x + 4sin{\rm{ }}x = 5 \cr 
& \Leftrightarrow {3 \over 5}\cos x + {4 \over 5}\sin x = 1 \cr 
& \Leftrightarrow \cos x\cos \varphi + \sin x\sin \varphi = 1\cr&(\text { với }cos\varphi = {3 \over 5};\sin \varphi = {4 \over 5}) \cr 
& \Leftrightarrow \cos (x - \varphi ) = 1 \cr 
& \Leftrightarrow x - \varphi = k2\pi \,\,\,(k \in\mathbb Z) \cr 
& \Leftrightarrow x = \varphi + k2\pi \,\,\,(k \in\mathbb Z)\cr} \)

\(c) \,\,sin x + cosx = 1 + sinx. cosx\)

\(⇔ sin x – sin x. cosx + cosx – 1= 0\)

\(⇔ sin x ( 1 – cosx) – (1 – cosx) = 0\)

\(\eqalign{
& \Leftrightarrow (1 - \cos x)(\sin x - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm cosx}\nolimits} = 1 \hfill \cr 
sinx = 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = k2\pi \hfill \cr 
x = {\pi \over 2} + k2\pi \hfill \cr} \right.(k \in \mathbb Z) \cr} \)

d) Điều kiện \(\sin x ≥ 0\). Khi đó:

\(\eqalign{
& \sqrt {1 - \cos x} = \sin x \cr 
& \Leftrightarrow 1-\cos x = {\sin ^2}x \cr 
& \Leftrightarrow 1 - {\sin ^2}x - \cos x = 0 \cr 
& \Leftrightarrow {\cos ^2}x - \cos x = 0 \cr 
& \Leftrightarrow \cos x(cosx - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos x = 0 \hfill \cr 
\cos x = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr 
x = k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

\(\begin{array}{l}
\pi \le \frac{\pi }{2} + k\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{5}{2} \\ \mathop \Rightarrow \limits^{k \in Z} \left[ \begin{array}{l}
k = 1 \Rightarrow x = \frac{{3\pi }}{2}\,\,\left( {ktm\,\,\sin x \ge 0} \right)\\
k = 2\,\,\left( {tm} \right)
\end{array} \right.\\
\pi \le k2\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{3}{2}\mathop \Rightarrow \limits^{k \in Z} k = 1 \Rightarrow x = 2\pi \,\,\left( {tm} \right)
\end{array}\)

Vì \(\sin \frac{{5x}}{4} \le 1;\,\,\cos x \le 1 \Rightarrow \sin \frac{{5x}}{4} + \cos x \le 2 < 3 \Rightarrow \) phương trình trên vô nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved