PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 14 trang 106 SGK Toán 9 tập 1

Đề bài

Cho đường tròn tâm \(O\) bán kính \(25cm\), dây \(AB\) bằng \(40cm\). Vẽ dây \(CD\) song song với \(AB\) và có khoảng cách đến \(AB\) bằng \(22cm\). Tính độ dài dây \(CD\).

Phương pháp giải - Xem chi tiết

+) Kẻ đường kính vuông góc với dây. 

+) Sử dụng định lý: Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây ấy.

+) Sử dụng định lí Pytago: \(\Delta{ABC}\) vuông tại \(A\) thì \(BC^2=AB^2+AC^2\).

Lời giải chi tiết

 

Vẽ \(OH\perp AB\), đường thẳng \(OH\) cắt \(CD\) tại \(K\).

Vì \(AB // CD\) mà \(OH\perp AB\) suy ra \(OH \perp CD\) hay \(OK \perp CD\).

Ta có \(OK \bot DC\) và \(OH \bot AB\) nên \(KC=KD=\dfrac {CD}2\) và \(AH=HB=\dfrac {AB}2\) (vì đường kính vuông góc với dây thì đi qua trung điểm của dây ấy)

Ta có: \(OB=OD=R=25cm\). 

Áp dụng định lí Pytago vào tam giác \(OBH\) vuông tại \(H\), ta có:

\(OB^2=OH^2+HB^2 \Rightarrow OH^2=OB^2-HB^2\)

\(\Leftrightarrow OH=\sqrt{OB^2-\left ( \dfrac{AB}{2} \right )^2}\)

\(=\sqrt{25^2-\left ( \dfrac{40}{2} \right )^2}=15(cm)\)

Lại có: \(HK=OH+OK \)

\(\Rightarrow OK=HK-OH=22-15=7(cm)\)

Áp dụng định lí Pytago vào tam giác \(OKD\) vuông tại \(K\), ta có:

\(OD^2=OK^2+KD^2\)

\(\Rightarrow KD^2=OD^2-OK^2=25^2-7^2=576\)

\(KD=\sqrt{576}=24(cm)\)

\(\Rightarrow CD=2KD=48(cm)\)

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved