PHẦN GIẢI TÍCH - TOÁN 12

Câu 14 trang 148 SGK Giải tích 12

Đề bài

Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục Ox

Tính thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\,\,y = g\left( x \right)\) xung quanh trục Ox.

Bước 1: Giải phương trình hoành độ giao điểm, suy ra các nghiệm \({x_1} < {x_2} < ... < {x_n}\)

Bước 2: Tính thể tích:

\(\begin{array}{l}
V = \pi \left[ {\int\limits_{{x_1}}^{{x_2}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} + \int\limits_{{x_2}}^{{x_3}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} + ...} \right.\\
\left. {+ \int\limits_{{x_n}}^{{x_n}} {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} } \right]
\end{array}\)

Lời giải chi tiết

Xét phương trình hoành độ giao điểm

\(\displaystyle 2{x^2} = {x^3} \Leftrightarrow {x^2}\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2
\end{array} \right.\)

Vậy thể tích cần tìm là:

\(\displaystyle \begin{array}{l}
V = \pi \int\limits_0^2 {\left| {{{\left( {2{x^2}} \right)}^2} - {{\left( {{x^3}} \right)}^2}} \right|dx} = \pi \left| {\int\limits_0^2 {\left( {4{x^4} - {x^6}} \right)dx} } \right|\\
\,\,\,\, = \pi \left| {\left. {\left( {\frac{{4{x^5}}}{5} - \frac{{{x^7}}}{7}} \right)} \right|_0^2} \right| = \frac{{256}}{{35}}\pi 
\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved